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Abstract. An optical micro/nanofiber (MNF) is a quasi-one-dimensional free-standing optical waveguide with a
diameter close to or less than the vacuum wavelength of light. Combining the tiny geometry with high-
refractive-index contrast between the core and the surrounding, the MNF exhibits favorable optical
properties such as tight optical confinement, strong evanescent field, and large-diameter-dependent wave-
guide dispersion. Meanwhile, as a quasi-one-dimensional structure with extraordinarily high geometric and
structural uniformity, the MNF also has low optical loss and high mechanical strength, making it favorable for
manipulating light on the micro/nanoscale with high flexibility. Over the past two decades, optical MNFs,
typically being operated in single mode, have been emerging as a miniaturized fiber-optic platform for
both scientific research and technological applications. In this paper, we aim to provide a comprehensive
overview of the representative advances in optical MNFs in recent years. Starting from the basic
structures and fabrication techniques of the optical MNFs, we highlight linear and nonlinear optical and
mechanical properties of the MNFs. Then, we introduce typical applications of optical MNFs from near-
field optics, passive optical components, optical sensors, and optomechanics to fiber lasers and atom
optics. Finally, we give a brief summary of the current status of MNF optics and technology, and provide
an outlook into future challenges and opportunities.
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1 Introduction
An optical micro/nanofiber (MNF) is a kind of quasi one-
dimensional (1D) free-standing optical waveguide with a
diameter close to or less than the vacuum wavelength of the
transmitted light. The earliest report of glass MNFs with diam-
eters around 1 μm could be traced back to 1887 when Boys
fabricated glass threads by drawing molten minerals at a high
speed[1]. However, at that time, those MNFs were not used for
optical waveguiding. Instead, owing to their excellent elasticity
and small resilience of these threads, they were used as elastic

springs or suspension wire for measuring a very small force or
torsion[2,3]. In 1910, Hondros and Debye reported the first theo-
retical model for waveguiding light along a dielectric cylinder,
and showed that electromagnetic waves could be confined and
propagated in a lossless dielectric cylindrical waveguide, with a
diameter below the wavelength[4]. However, it was not until the
1950s that these waveguiding modes in cylindrical waveguides,
named as “surface waves,” began to receive much attention[5–8].
In 1951, O’Brien and van Heel proposed covering low-index
cladding on the surface of cylindrical waveguides to reduce
the crosstalk between the waveguides[9], and in the following
years, Hopkins and Kapany demonstrated sub-micrometer
multiple fibers coated with low-index cladding for image trans-
mission[10–12]. In 1966, Kao and Hockham proposed the possibil-
ity of developing low-loss glass fibers[13], opening up the era of
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optical fiber communication, as well as low-loss fiber optics and
technology. From then on, taper drawing a standard silica fiber
became a routine approach to fabricating an MNF (typically
called the fiber taper) connected with a silica fiber through a
conical taper, and the shape of the taper and the diameter of
the waist (i.e., MNF) could be controlled much better than
before[14–18]. Relying on the surface waves (i.e., waveguided
evanescent fields) of these MNFs[19,20], a variety of applications
were proposed or developed including optical filters[21,22],
couplers[23,24], evanescent field amplification[25], sensors[26,27],
and supercontinuum generation[28], while the diameters of the
MNFs used or assumed were mostly larger than the vacuum
wavelength of the guided light.

In 2003, Tong and Mazur experimentally demonstrated that
subwavelength-diameter silica nanofibers taper drawn from
silica fibers could be used for low-loss optical waveguiding[29],
opening an opportunity for guiding light in MNFs with smaller
sizes and stronger “surface waves,” which in turn, bestowed the
MNFs with tight optical confinement, strong evanescent fields,
and highly engineerable waveguide dispersion[30]. Shortly after,
such MNFs were experimentally proved to have losses (e.g.,
1.4 dB/mm[31]) lower than all other subwavelength-width optical
waveguides in visible and near-infrared (NIR) spectral ranges[32].
Since then, a number of improved MNF fabrication techniques,
based on flame-heated[33–40], electrically heated[41–45], and CO2

laser-heated[46–48] taper drawings of standard optical fibers, have
been demonstrated[49,50]. So far, waveguiding loss of silica MNFs
can typically be below 0.1 dB/m, with the lowest value of
0.03 dB/m[37] (i.e., three orders of magnitude lower than that
of a planar waveguide with similar width[51]). Also, with a high-
precision real-time diameter-monitoring technique[38,39,45,50,52],
the diameter of the MNF can be obtained on-demand, with
the best precision of�2 nm[39]. Moreover, by keeping the taper-
ing angle below the mode-transition critical angle, the single-
mode light field in a standard-sized fiber can be squeezed into
anMNFmode almost losslessly (typical loss<0.0015 dB), with
the highest fiber-MNF-fiber overall transmittance exceeding
99.9% (i.e., insertion loss <0.005 dB)[53]. The excellent fiber
compatibility not only offers an efficient and compact input/out-
put scheme, but also facilitates the handling and manipulation of
MNFs in experiments. More recently, based on the ultra-low
optical loss of pristine MNFs, high-power (>10 W) continuous-
wave (CW) optical waveguiding in a subwavelength-diameter
silica MNF at 1550-nm wavelength has been experimentally
realized, with the smallest MNF diameter down to 410 nm
(i.e., λ∕3.8)[54], opening an opportunity for MNF-based high-
power optical applications. In addition, besides the silica glass,
many other types of glass (e.g., phosphate, tellurite, and chal-
cogenide glass[55–57]) have also been drawn into MNFs, which
greatly enriches the category of optical MNFs.

Generally, as the fiber diameter decreases to the subwave-
length scale, the MNF exhibits fascinating optical properties
that are different from standard optical fibers, including a strong
evanescent field, tight optical confinement, surface field en-
hancement, and diameter/wavelength-dependent large wave-
guide dispersion[30,58–60]. Also, benefitting from nearly perfect
structural and geometric uniformities, glass MNFs possess re-
markable mechanical properties, such as high tensile strength
(e.g., higher than 10 GPa[61]) and excellent elasticity[61–63], which
enable robust and flexible manipulation of freestanding MNFs
in various surroundings (e.g., vacuum, gas, or liquid). These
favorable optical and mechanical properties, as well as high

physical and chemical stabilities of silica glass, make the
MNFs a versatile platform for studying light-matter interaction
on the micro/nanoscale and developing related photonic tech-
nologies [see Fig. 1]. Firstly, the strong evanescent field of
the MNF is ideal for studying the near-field interaction between
the waveguide mode and matter [e.g., molecules, nanoparticles
(NPs), and two-dimensional (2D) materials] located close to the
fiber surface, and developing highly efficient near-field coupling
techniques (e.g., in/out-coupling of nanowaveguides), as well as
functionalization of the MNF itself (e.g., evanescently coupled
active or nonlinear materials). Secondly, the tightly confined
high-fraction evanescent fields of optical MNFs make the wave-
guiding field highly sensitive to the refractive-index change Δn
of the surrounding environment and/or coupled samples, offer-
ing special advantages for high-sensitivity optical sensing on the
micro/nanoscale[64–66]. Thirdly, when being squeezed adiabati-
cally from a larger-area mode of a standard optical fiber, the
tightly confined field of an MNF mode (i.e., with a very small
mode area), is highly favorable for enhancing nonlinear optical
effects in the MNF or coupled materials[67–69], as has been widely
investigated for harmonic generation[70–72], Brillouin scattering
(BS)[73,74], four-wave mixing (FWM)[75], stimulated Raman scat-
tering (SRS)[76,77], and supercontinuum generation[31,78,79].
Fourthly, the waveguide dispersion of optical MNFs is strongly
dependent on the diameter or wavelength, offering a compact,
flexible, low-loss, and fiber-compatible scheme for dispersion
management in nonlinear optics[78,80], pulse compression[81],
and fiber lasers[82–84]. Fifthly, by selecting an appropriate diam-
eter-to-wavelength ratio (D∕λ), a large field gradient in the
evanescent field can be generated in the vicinity of the MNF
surface, which has been exploited for manipulating micro/nano-
particles[85] and cold atoms[86–88]. Finally, owing to their small
mass, optical MNFs can exhibit a sensitive optomechanical re-
sponse (typically manifested as mechanical vibrations) to the
momentum change of the waveguided light fields[89–91], which

Fig. 1 Overall description of optical MNFs in terms of character-
istics and applications.

Zhang et al.: Optical microfiber or nanofiber: a miniature fiber-optic platform for nanophotonics

Photonics Insights R02-2 2024 • Vol. 3(1)



has been adopted for studying optoacoustic interactions[73,74,92,93]

and optomechanical technology[94]. So far, optical MNFs have
been attracting broad interest from near-field optics, nonlinear
optics, atom optics, and optomechanics to optical nanowave-
guides, micro-couplers, resonators, sensors, and lasers.

Overall, the past two decades have witnessed an encouraging
development of optical MNFs. As a miniaturized fiber-optic
platform, optical MNFs not only retain the intrinsically out-
standing waveguiding properties of conventional optical fibers,
but also offer favorable nanophotonic behaviors. Parallel to the
flourishing of fiber-optic technology and nanotechnology in the
early 21st century, high-quality glass MNFs have been devel-
oped as low-dimensional ultralow-loss optical waveguides on
the (sub)wavelength scale, and have been inspiring abundant
research interest in multidisciplinary fields from time to time.
Previously, MNF optics and applications have been reviewed
in many articles[49,50,58–60,65–67,69,84–88,95,96], with most of them focus-
ing on a certain specific research area such as fabrication[49,50],
nonlinear optics[67,69], optomechanics[85], atom optics[86–88], pas-
sive components[60], optical sensors[64–66], and fiber lasers[84].
There are several comprehensive review articles[58,59] or a mono-
graph[97], but they all have been published for more than 10
years. Now it is the time to give an updated and comprehensive
review, to include the latest progress and new insights in
this field.

In this regard, we review the development of optical MNFs
over the past two decades, with emphases on their fabrication,
properties, and applications. The article contains the following
six sections: (1) Introduction—a brief introduction to the histori-
cal background and a summary of properties and potentials of
glass MNFs; (2) Fabrication of Optical MNFs—recent advances
in the fabrication of optical MNFs, especially an advanced
fabrication technique with real-time high-precision diameter
control; (3) Optical Waveguiding Properties of the MNFs—
theoretical and experimental waveguiding properties of optical
MNFs, including linear and nonlinear optical properties;
(4) Mechanical Behavior—elastic and plastic deformation, with
emphases on elastic strain and tensile strength of glass MNFs;
(5) MNF-Based Applications—from near-field optical cou-
pling, passive optical components, optical sensors, and optome-
chanics to fiber lasers and atom optics; (6) Conclusion and
Outlook—a brief summary of the current status of MNF
optics and technology, and an outlook of future challenges
and opportunities.

2 Fabrication of Optical MNFs
The materials of optical MNFs are generally divided into glassy
or crystal materials. Silica glass, which presents a number of
advantages of excellent homogeneity, broadband optical trans-
parency (around 250–2800 nm), high physical and chemical sta-
bility, low thermal expansion, temperature-dependent viscosity,
and easy remolding, is a typical glassy material for optical
MNFs. Historically, since the first glass MNF was drawn from
molten quartz by a flying arrow in the late 19th century[1], with
the advancement of technology in the first half of the 20th cen-
tury, silica MNFs were feasible to fabricate from glass in a stable
and efficient manner, and their optical properties (e.g., birefrin-
gence and bending loss) were investigated[98,99]. After the 1960s,
along with the development of standard glass fibers, glass
MNFs were routinely taper drawn from glass fibers heated
by flame or laser beams[24,100,101], which also facilitated optical
launching and handling of the MNFs that were naturally

connected to the glass fibers. Meanwhile, mechanized or auto-
mated stretching systems were invented to better control the ta-
pering shape and improve the repeatability[18,24]. The emergence
of subwavelength-diameter MNFs in the 2000s, especially for
waveguide dispersion management and cold atom manipulation,
puts forward higher requirements on the diameter accuracy, and
mechanized stretching systems with real-time feedback for
high-precision diameter control were thus developed.

For glass MNF, high-temperature drawing is the main fabri-
cation technique. When heated, glass becomes viscous[102], mak-
ing it possible to be drawn into a fiber with a diameter down to
nanometer scale. Meanwhile, the high-temperature drawing pro-
cess bestows the MNF a pristine molten-frozen surface, with an
intrinsic surface roughness down to sub-nanometer scale[103–105].
Therefore, compared with other approaches (e.g., chemical
etching[106] and excimer laser ablation[107]), the high-temperature
drawing technique offers glass MNFs with unparalleled geomet-
ric uniformity and surface smoothness (e.g., ∼0.2 nm in surface
roughness), which are essential for low-loss optical waveguid-
ing[29,33,34,56]. With the assistance of a scanning heating system
(i.e., “flame brush”[18,49,108] and later the “scanning fiber” with
a motionless flame[40]), the length of the uniform-diameter
MNFs can reach tens of centimeters[40].

Inspired by glass MNFs, other types of optical MNFs have
been fabricated from functional materials other than glass. For
example, a variety of polymers [e.g., polymethyl methacrylate
(PMMA)[109], polystyrene (PS)[110,111], and polyacrylamide
(PAM)[112]] or biomaterials (e.g., silkworm silk[113], spider
silk[114,115], lotus root silk[116], and Escherichia coli[117]) have been
fabricated intoMNFs by physical (solution/melt) drawing[109–112],
chemical/biological synthesis[113–118], or electrospinning[119], and
used to waveguide light for a variety of purposes. In addition,
recently, crystal micro/nanoscale wires made of semiconduc-
tors[120–123], dielectrics[124,125], or even ice[126] have also been
called optical “nanofibers” or “microfibers” when they are used
for optical waveguiding, just as we namedwaveguidingwire-like
sapphire single crystals as sapphire optical fibers some 30 years
ago[125,127], although they are typically fabricated by bottom-up
crystal growth processes[128–132].

This section focuses on high-temperature drawing techniques
of glass optical MNFs and the corresponding diameter control
and characterization techniques. The fabrication of other types
of MNFs can be found in many review articles elsewhere[128–136].

2.1 Taper Drawing of Silica Fibers

The taper-drawing technique is a top-down approach that physi-
cally tapers and extends a structure based on its viscosity at a
certain temperature or concentration. This technique works for
glassy materials (e.g., glass, polymer, or even metals) and can
reduce the cross-sectional size of the taper down to nanometer
scale, while maintaining an ultra-low surface roughness.
Figure 2(a) shows a structural diagram of taper drawing a stan-
dard glass fiber by stretching both sides of the heated fiber.
When the diameter goes down to the target size, an MNF is ob-
tained with both ends connected to standard fibers through coni-
cal transition regions, and this kind of MNF is usually called a
“biconical” MNF. The typical taper drawing process and the
geometry of the transition region of an MNF can be predicted
by a tapering model proposed by Birks and Li[18]. Relying on a
flame brush technique, which will be introduced in detail in
Section 2.1.1, one can fabricate MNFs with various profiles
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(e.g., linear, exponential, and sinusoidal) of the transition region
for different purposes.

The optical loss of the transition region is mostly concerned.
As a bridge connecting with a standard fiber pigtail and the
MNF, the transition region allows the compression of the propa-
gation light field from 10-μm to sub-1-μm sizes. When the
propagation light goes through the transition region, the funda-
mental mode is progressively waveguided at the silica-air inter-
face as the higher-order modes, leading to continuous weak
coupling and interference between the fundamental mode and
high-order modes. If the taper angle of the transition region
is too steep [Ω in Fig. 2(a)], a certain fraction of the mode energy
will be transferred from the fundamental mode to high-order
modes and radiation modes, resulting in a radiation loss and thus
reduction of the optical transmittance[137]. To prevent the mode
leakage as far as possible, the waveguiding mode should adia-
batically couple from the core to the cladding and couple back to
the core, suggesting that all the energy remains in the fundamen-
tal mode during the mode evolution[16,18,137,138]. The adiabatic cri-
terion for the transition region is[18,138,139]

DT∕2
tanΩ

≥
2π

β1 − β2
; (1)

where the left-hand formula represents the characteristic length
of the fiber diameter variation with a tapering angle Ω [see
Fig. 2(a)], while the right-hand formula represents the beat
length between the fundamental mode and one of the high-order
modes. DT is the fiber diameter of the transition region. β1 and
β2 are propagation constants of the fundamental mode and the
first excited high-order mode (i.e., HE12 mode), respectively.
Figure 2(b) shows the profile of the transition region of a typical
adiabatic MNF. The red dots are the calculated critical angle of
the HE12 mode, while the black dots, always located below the
red dots, represent the actual tapering angles Ω. Under such an
adiabatic criterion, the mode-coupling loss can be minimized
during the MNF fabrication.

For a standard silica fiber, the softening temperature and
annealing temperature are about 1665°C[140] and 1140°C[141], re-
spectively. To draw a silica fiber into an MNF, the heating tem-
perature should be higher than the annealing temperature. Since
the viscosity of the fiber is temperature-dependent, the optimal
drawing speed for a low-loss MNF varies with the heating tem-
perature. So far, the reported heating temperature for drawing a
silica fiber falls between 1160°C and about 1500°C, with a
drawing speed ranging from 0.04 mm/s to about 0.5 mm/s, cor-
respondingly[37–46,49,50]. As a reference, for a drawing speed of
0.1 mm/s, the typical heating temperature of the heating source
is ranging from 1200°C to 1300°C.

In real fabrication, the precision of mechanical motion com-
ponents and the stability of the thermal field for fiber heating are
crucial to obtain MNFs with excellent diameter uniformities and
extraordinary surface smoothness. Also, the choice of heating
methods is particularly important for taper drawing different
glass materials, as well as for obtaining MNFs with different
properties. Currently, there are three heating methods: flame,
electric, and laser-heated methods, as introduced below.

2.1.1 Flame-heated taper drawing of glass fibers

The typical fabrication system of the “flame-heated taper draw-
ing” is shown in Fig. 3(a). A fixed gas nozzle, cooperating with
a mass flow controller, provides a stable flame (e.g., oxyhydro-
gen flame[37,142,143] and isobutane-oxygen flame[33]) for heating a
standard fiber. Once a bare fiber located at the heating zone
reaches a stable temperature, two high-precision translation
stages on both sides smoothly draw the fiber into an MNF.
Usually, in the case of a fixed hot zone and simply drawing
a fiber to both sides, it is challenging to achieve a uniform waist
length exceeding 1 cm. As an alternative, the flame brush tech-
nique, first used for fabricating fiber couplers[144], has been com-
monly adopted to fabricate fiber tapers[18] and optical MNFs[58]

with larger lengths. Using this fabrication technique and the fab-
rication system in Fig. 3(a), we can obtain a long-length optical
MNF. Figure 3(b) gives the schematic (upper, not to scale) and
experimentally measured (bottom) fiber diameter evolution of a
typical biconical silica MNF (930� 2 nm in diameter and 9 cm
in uniform length), in which the scanning electron microscope
(SEM) image [see Fig. 3(b), bottom inset] reveals an extremely
smooth surface of the MNF.

Typically, the flame brush technique has two configurations.
The first is that the flame moves to and fro to heat and scan an
optical fiber, while two translation stages move outward to draw
the fiber[145,146]. Note that the hydrogen flame may be fluttered by
the airflow during the reciprocating motion, resulting in an un-
even heating of the fiber. Alternatively, using an electric heater
or a CO2 laser heater can be much more stable in the scanning
process, which is also called as “modified flame brush tech-
nique”[58]. In the second type the flame is motionless, while
the fiber is scanned and stretched on top of the flame, driven
by the translation stages[40]. It is worth mentioning that the ex-
cellent stability and smoothness of the moving translation stages
are critical to removing uncertainties and obtaining a high-
quality MNF in the taper-drawing process. In recent years, with
the development and widespread adoption of high-precision,
high-stability, and highly controllable translation stages, the
uncertainties in the MNF fabrication, especially in the second
configuration, have been effectively suppressed.

With these improved fabrication systems, MNFs with low
loss, large length, and high diameter uniformity can be routinely

Fig. 2 (a) Structural diagram of a biconical optical MNF. SMF,
single-mode fiber; Ω, tapering angle of the transition region;
DT, fiber diameter in the transition region. (b) Tapering angle
of a typical MNF (black squares) and calculated critical angle
(red dots) as functions of local taper diameter at 1550-nm wave-
length[40].
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obtained. For instance, in 2014 Hoffman et al. achieved an op-
tical transmittance as high as 99.95� 0.02% in a single-mode
MNF (500 nm in diameter and 5 mm in length) at 780-nm wave-
length[37], corresponding to a loss as low as 2.6 × 10−5 dB∕mm.
In 2020, Yao et al. reported a 99.4%-transmittance low-loss
MNF with a diameter of 1.2 μm, diameter uniformity of
∼10−7, and a length of 10 cm at 1550-nm wavelength[40].

Typical optical and electron microscope images of as-
fabricated MNFs are shown in Fig. 4. Figure 4(a) shows a
bright-field optical microscopic image of a 550-nm-diameter
silica MNF. Although measuring the accurate diameter of such
a thin MNF is beyond the capability of conventional optical
microscopy, the diameter uniformity and the defect-free surface
of the MNF can be clearly observed. To examine the MNF with
a higher resolution, electron microscopes are typically adopted.
Figures 4(b)–4(e) present SEM images of as-fabricated silica
MNFs, manifesting excellent diameter uniformities with fiber
diameter down to 30 nm [see Fig. 4(b), a bundle of MNFs with
diameters of 140, 510, and 30 nm, respectively], extraordinary
surface smoothness [see Fig. 4(c)], long length [see Fig. 4(d)],
and outstanding mechanical strength [see Fig. 4(e)]. To inves-
tigate the surface roughness of optical MNFs, a higher-
magnification transmission electron microscope (TEM) can

be used. Figure 4(f) gives a TEM image of a 330-nm-diameter
MNF[29], obtaining a root-mean-square roughness of about
0.2 nm, which is much better than all other types of subwave-
length-diameter/width optical waveguides. The electron diffrac-
tion pattern [see the inset of Fig. 4(f)] manifests that the silica
MNF is amorphous.

However, the flame-heated configuration has some limita-
tions: (1) the flame will cause airflow disturbance to the
MNF, especially to the MNF with a diameter of a few hundred
nanometers or less; (2) the combustion byproducts may adhere
to the surface of MNFs, resulting in the surface contamination.
To address these issues, one may use other types of heating
sources.

2.1.2 Electrically heated taper drawing of glass fibers

Compared with the flame, the electric heater not only provides a
more stable temperature environment with minimal airflow dis-
turbance and contamination, but also offers an opportunity to
draw fiber in the atmosphere other than air (e.g., argon and nitro-
gen), and can thus effectively isolate the glass from oxygen or
OH− when needed. Also, by controlling the supply current, the
heating temperature can be controlled much more precisely
and conveniently than the flame. Figure 5 shows photographs

Fig. 3 Typical flame-heated taper-drawing fabrication system. (a) Photograph of a flame-heated
taper-drawing system for fabricating silica MNFs. Inset: close-up image of the flame nozzle.
(b) Schematic (upper, not to scale) and experimentally measured (bottom) fiber diameter evolution
of a biconical drawn silica MNF along the fiber length[54]. The MNF has a diameter of about 930 nm
and a uniform length of 9 cm. The diameter evolution of the tapering region (red circles) was mea-
sured by an optical microscope (upper insets), while that of the MNF (blue circles) was measured
by a scanning electron microscope (bottom inset).
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of typical electric heaters used for drawing glass MNFs. For
high-temperature operation (e.g., >1100°C), the optional mate-
rials for heating elements are silicon nitride, silicon carbide,
platinum, and metal alloy wires (e.g., FeCrAl). Besides silica
fibers, the electric heating method is also suitable for taper
drawing MNFs from other types of glass fibers, especially
soft glass with relatively low softening temperatures [see
Fig. 5(b)][55,147,148]. More recently, using a wide-zone electric
heater, a parallel fabrication technique of silica MNFs has been
reported[149], which enables simultaneous drawing of multiple

MNFs with almost identical geometries. However, it should
be mentioned that compared to the flame, the electric heating
element will inevitably suffer from aging when operating at high
temperatures (e.g., >1100°C) in the long term, and thus usually
has a limited lifespan (e.g., hundreds of hours).

2.1.3 Laser-heated taper drawing of glass fibers

In the far-infrared spectrum, silica glass exhibits significant op-
tical absorption. Therefore, a 10.6-μm-wavelength CO2 laser
can be used for pollution-free heating and drawing fibers[150,151].
Previously, a direct laser-heating approach was adopted for fab-
ricating silica MNFs with relatively large diameters (e.g., sev-
eral micrometers). For example, in 1999 Dimmick et al. used a
CO2 laser beam [13 W in power and 820 μm at half-maximum
(FWHM) in a focused spot size] to fabricate MNFs with diam-
eters down to 4.6 μm[24]. However, due to the Mie scattering, the
effective absorption decreases with a reduced fiber diameter.
Consequently, when the fiber diameter goes down to a certain
value at which the effective heating temperature of the MNF
drops below the allowable drawing temperature, the drawing
process is forced to stop[24,150]. Typically, with a reasonable laser
power (e.g., less than 1 kW), the minimum diameter of the MNF
obtained by this direct laser-heating approach can hardly go be-
low 1 μm. To draw thinner MNFs with a laser-heating system,
an indirect laser-heating approach can be used. In 2004, using a
sapphire tube to absorb the CO2 laser beam and create a stable
high-temperature zone for heating a fiber, Sumetsky et al.
successfully fabricated MNFs with diameters less than
100 nm[152]. Such an indirect laser-heating configuration offers
the flexibility to adjust the heating temperature by the laser
power and temperature distribution by the tube geometry.
More recently, using micro-sized plasmonic heaters (i.e., pieces
of metal plates), Jia et al. obtained nonadiabatic optical MNFs
with steep tapering angles and ultra-short transition regions (e.
g., a few tens of micrometers)[153]. Owing to the compactness of
the fabrication system, the taper-drawing process can be carried
out inside an SEM chamber and in-situ monitored with a high
resolution.

2.1.4 High-precision diameter control and measurement

High-precision diameter control is essential to avoid radiation
loss in the tapering transition region, as well as to field distri-
bution and waveguide dispersion management in the uniform
MNF for applications ranging from near-field optical cou-
pling[154], optical sensing[65,66], and harmonic generation[71] to
pulse compression[81,84] and atom trapping[86–88]. To date, the most
frequently adopted method is real-time feedback control by
monitoring the intermodal interference and high-order-mode
cutoff during the fabrication process[38,39,45]. In 2014, Yu et al.
first reported a diameter-control method with feedback by mon-
itoring the cutoff of the LP02 mode in the intermodal interfer-
ence[45], showing a diameter error of less than 2%. Later in 2017,
Xu et al. demonstrated a feedback control of the MNF diameter
by monitoring the drops of high-order modes at 785-nm wave-
length, stopping the drawing process after a certain time accord-
ing to the constant hot-zone model, and obtaining a precision
better than 5 nm for fiber diameters in the range of 800–
1300 nm[38]. More recently, Kang et al. improved the diameter-
control technique by employing a white-light source as the
probing light, real-time monitoring, and immediately stopping
the drawing process at the cutoff of the TE01 mode[39], and real-
ized a precision of about �2 nm with fiber diameters from 360

Fig. 5 Typical electric heaters in fiber-drawing systems.
Photographs of (a) a ceramic heater for drawing silica MNFs
(NTT-AT, CMH-7022) and (b) a self-designed U-type copper
heater for drawing soft-glass MNFs.

Fig. 4 Structural characterization of silica MNFs. (a) Optical mi-
croscope image of a 550-nm-diameter silica MNF. SEM images
of (b) self-supporting bundle of MNFs assembled with silica
MNFs with diameters of 140, 510, and 30 nm[97], (c) 790-nm-
diameter silica MNF with a smooth surface, (d) coiled 260-nm-
diameter silica MNF with a total length of about 4 mm[29], and
(e) 360-nm-diameter silica MNF with a bending radius of 3 μm[95].
(f) TEM image of the surface of a 330-nm-diameter silica MNF[29].
Inset: electron diffraction pattern of the MNF.
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to 680 nm. Figure 6 shows the real-time diameter control of the
taper drawing a 360-nm-diameter MNF by monitoring the
TE01-mode cutoff at 532-nm wavelength. Once the abrupt in-
tensity drop for the TE01 mode is observed, the MNF pulling
process is terminated instantly.

With the above-mentioned high-precision diameter control
technique, MNFs with accurate diameters and excellent diam-
eter uniformity can be fabricated with good reproducibility,
which have found applications in MNF Fabry-Pérot (FP)
cavities[53] and high-efficiency harmonic generation[54]. Besides
the high-order-mode cutoff, the scattering intensity of wave-
guiding evanescent fields has also been used for real-time diam-
eter control[52]. Also, the diameter uniformity and control
accuracy can be further improved by optimizing the heating
condition, feedback system, and mechanical performance of
the fabrication system.

In addition, it is worth mentioning that, driven by the demand
for in-situ diameter measurement of the MNF, a number of non-
destructive optical methods have been reported over the last
20 years. For example, in 2004 Warken and Giessen demon-
strated that the profile of subwavelength-diameter MNFs could
be measured by the diffraction pattern, with a resolution of
�50 nm over a length of 5 cm[155]. Similarly, a series of optical
microscopy techniques have also been reported for measuring
the MNF diameter with a resolution of below 50 nm[156–159].
In 2006, Sumetsky et al. proposed a fiber-assisted scanning
detection technique for probing the surface and bulk distortions
of optical MNFs[160]. By scanning a partly stripped 125-μm-
diameter fiber along an MNF and detecting the optical transmis-
sion of the MNF, sub-nanometer measurement accuracy of the
MNF diameter was realized. Besides, many other techniques
based on external gratings[161,162], near-field probing[52,163–165],
stress-strain analysis[62], Rayleigh scattered light imaging[166,167],
optical backscattering reflectometry technique[168], short-time
Fourier transform analysis on the modal evolution[169], second-
and third-harmonic generation[170], and forward BS[171], with a res-
olution from 15 nm to 40 pm, have been reported in recent years.

2.2 More Fabrication Techniques

The aforementioned technologies primarily use standard fibers
as preforms for fabricating MNFs with mechanized systems.
However, not all materials can be obtained in fiber forms, es-
pecially those actively functionalized glass or polymer materi-
als. Therefore, several other fabrication techniques, including
drawing MNFs directly from bulk pieces of glass[56], polymer

solution[112,172–174], or melt[175–177], have been reported in recent
years. Meanwhile, the fabrication of glass MNFs using chemical
etching[106] and electric arc[178–180], and polymer MNFs using
chemical synthesis[118], electrospinning[119], and nanolithogra-
phy[181], has also been demonstrated. In addition, bottom-up
synthesized techniques, originally for growing crystalline
whiskers[182], have also been improved for growing highly uni-
form single-crystal photonic semiconductor micro/nanowires
(also called MNFs recently)[136,183,184], oxide nanowires[185–187],
or even ice microfibers[126], for low-loss optical waveguiding. As
most of these techniques have been reviewed elsewhere[128–136],
limited by the space of this article, we will not go into detail.

3 Optical Waveguiding Properties of the
MNFs

For guiding light on the micro/nanoscale, optical waveguiding
behaviors are the most concerned properties of the MNFs. Since
the first waveguiding model of the dielectric cylinders[4], so far,
comprehensive theoretical models have been established for
both linear and nonlinear optical waveguiding in MNFs.
Incorporated with versatile numerical calculation software prod-
ucts (e.g., MATLAB, Mathematica, COMSOL, and Ansys
Lumerical FDTD), waveguiding behaviors of complicated
MNF-based structures (e.g., bending loss in bent MNFs[188,189],
near-field coupling between multiple MNFs[190–194], output end-
face patterns[195], and strong mode-coupling-induced ultra-
confined optical fields[196–198]) can now be obtained with a high
precision. Meanwhile, along with the fast-developed experi-
mental techniques for the manipulation and characterization
of individual MNFs, the optical properties of MNFs have been
measured and engineered experimentally. The first half of this
section aims to provide a comprehensive understanding of the
waveguiding behaviors in subwavelength-diameter MNFs
based on analytical and numerical approaches. In the latter half
of the section, we mainly discuss and summarize recent
advances in optical waveguiding properties.

3.1 Fundamental Waveguide Theory of Optical MNFs

Due to the large index contrast between the core of subwave-
length-diameter MNFs (e.g., n � 1.44 for silica) and surround-
ing (e.g., n � 1.0 for air), it is difficult to calculate the
propagation light field using weakly guiding approximation.
The most frequently used method is solving for the propagation
constants based on exact solutions of Maxwell’s equations and
numerical calculations[30]. Generally, an as-fabricated optical

Fig. 6 Schematic diagram of the diameter-control technique in the fabrication of a silica MNF
based on the mode-cutoff feedback[39].
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MNF possesses an extremely uniform diameter, smooth surface
[see Figs. 4(a), 4(c), and 4(f)], and perfect circular cross section
[see Fig. 7(a)], which are also well-defined in the theoretical
model. The length of the MNFs (typically >10 μm) is large
enough to establish the spatial steady state, and the MNF diam-
eter (D, typically >10 nm) is not very thin so that the macro-
scale parameters of permittivity (ε) and permeability (μ) can be
used to describe the responses of a dielectric medium to an in-
cident electromagnetic field. The MNF is assumed to have
an infinite air-clad with a step-index profile (i.e., two-layer
structure), which is expressed as

n�r� �
�
n1; 0 < r < D∕2
n2; D∕2 ≤ r < ∞

�
; (2)

where n1 and n2 are the refractive indices of the MNF core and
the surrounding, respectively. It is worth noting that for MNFs
with more layers of index profiles, a multiple-layer-structured
cylindrical waveguide model should be employed[199–201]. For
non-dissipative and source-free MNF materials, Maxwell’s
equations can be reduced to the following Helmholtz
equations[30,202]:

�∇2 � n2k2 − β2�e � 0; �∇2 � n2k2 − β2�h � 0; (3)

where k � 2π∕λ, λ is the vacuum wavelength of the transmitted
light and β is the propagation constant. Given the perfect circu-
lar cross section of a subwavelength-diameter MNF, Eq. (3) can
be analytically solved in the cylindrical coordinate and the
eigenvalue equations for the HEvm and EHvm modes are ob-
tained as[30,203]

�
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UJv�U� �

K0
v�W�
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2
�
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4

; (4)

for the TE0m modes:

J1�U�
UJ0�U� �

K1�W�
WK0�W� � 0; (5)

and for the TM0m modes:

n21J1�U�
UJ0�U� �

n22K1�W�
WK0�W� � 0; (6)

with the normalized transverse wave numbersU andW given by

U � D
2

�
k2n21 − β2

�1
2

; W � D
2

�
β2 − k2n22

�1
2

; (7)

with the V-number given by

V � D
2
k
�
n21 − n22

�1
2

; (8)

where Jv is the Bessel function of the first kind and Kv is the
modified Bessel function of the second kind.

By numerically solving the eigenvalues of Eqs. (4)–(6), the
propagation constants of waveguiding modes supported by a
circular-cross-section MNF can be obtained [see Fig. 7(b)].
The diameter-dependent waveguiding properties of air-clad
silica MNFs at 633-nm wavelength are presented. One can
clearly see that when the MNF diameter reduces to a certain
value [denoted as a dashed vertical line in Fig. 7(b), correspond-
ing to the V-number to be 2.405], only the fundamental mode
(i.e., HE11 mode) exists and higher-order modes are effectively
suppressed. In other words, the V-number can be used to evalu-
ate whether an MNF is operated at a single mode for a given
wavelength. In principle, for the case of single-mode operation
in a subwavelength-diameter MNF, the electric field of the HE11

mode is quasi-linearly polarized. Specifically, the transverse
component of the field is linearly polarized in time at each fixed
local point, while the total electric field vector rotates elliptically
with time, in a plane parallel to the MNF axis[88,204]. The trans-
verse component inside the MNF is not only linearly polarized
in time but also almost linearly polarized in space, while the
orientation angle of the transverse component outside the
MNF varies in space. To maintain the polarization state in
the waveguiding mode field of a subwavelength-diameter
MNF, several methods have been developed including using
scattering imaging[205,206] and directional coupling[207].
Additionally, it is widely known that standard fiber falls in
the regime of paraxial or weakly guiding, and thus the descrip-
tion of waveguiding modes can be greatly simplified using de-
generated linearly polarized (LP) modes. However, due to the
large index contrast, the waveguiding modes in an optical
MNF are non-degenerate with complex polarization properties.
To observe the light field distribution intuitively, Fig. 7(c) shows
electric fields of several waveguiding modes in a 600-nm-
diameter silica MNF including HE11, TE01, HE21, and TM01

modes at 633-nm wavelength. It is worth mentioning that 1D
crystalline nanowires, usually polygonal in cross section [see
Fig. 7(d)], are also widely used as nano-waveguides. To quickly
and accurately estimate their waveguiding properties (e.g.,
propagation constants), Bao et al. proposed a circular-area-
equivalence scheme to treat a polygonal-cross-section nanowire
as a circular MNF with an equivalent cross-section area[208], and
showed its advantages of simplicity, intuition, high accuracy,
and versatility in numerical calculation, even for cross sections
with fewer sides. Following the fundamental waveguide theory
above, we can judiciously investigate and design the optical
waveguiding properties of optical MNFs.

3.2 Basic Optical Waveguiding Properties

3.2.1 Evanescent field and optical confinement of waveguiding
modes

When the fiber diameter goes down to the subwavelength scale,
the light waveguided in an MNF contains an evanescent wave
carrying a significant fraction of the power, which penetrates a
certain distance outside the core. The power distribution in an
optical MNF can be written by the time-averaged Poynting-
vector component along the z-axis[30,69,202]:

Sz �
1

2
�E ×H�� · uz; (9)

where E and H represent spatial distributions of electric and
magnetic fields, respectively, and uz denotes a unit vector in
the z-direction.
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For the fundamental mode, the z-component of the Poynting
vector is obtained as inside the core (r < 2∕D):

Sz;in �
1

2

�
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�1
2 kn21
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�
a1a3J20�UR� � a2a4J22�UR�
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2
J0�UR�J2�UR� cos�2ϕ�

�
; (10)

and outside the core (r ≥ 2∕D):
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The fractional power inside the core (i.e., the percentage of
the confined light power inside the core) is defined as

η �
RD∕2
0

R
2π
0 Sz;indARD∕2

0

R
2π
0 Sz;indA� R∞

D∕2
R
2π
0 Sz;outdA

; (13)

with dA � r · dr · dϕ.
For reference, Fig. 8(a) presents the power distribution of

the HE11 mode at 633-nm wavelength in silica MNFs with
diameters of 800, 400, and 200 nm[32,59], clearly showing the

Fig. 7 Calculation of waveguiding modes in optical MNFs. (a) SEM image of a 400-nm-diameter
tellurite glass MNFwith a circular cross section[56]. (b) Calculated propagation constant (β) of wave-
guiding modes in an air-clad silica MNF at a wavelength of 633 nm[30]. Solid line: fundamental
mode. Dotted lines: high-order modes. Dashed line: critical diameter for single-mode operation.
(c) Electric fields of several waveguiding modes in a 600-nm-diameter silica MNF at 633-nm wave-
length. (d) SEM image of a 900-nm-diameter CdS nanowire with a hexagonal cross section[208]. d1

and d2 are the diagonal-circle approximation diameter and circular-area-equivalence diameter for
nanowires with different cross sections, respectively.
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increasing fractional power outside the fiber core with decreas-
ing fiber diameter. While an 800-nm-diameter MNF exhibits
good optical confinement at 633-nm wavelength with major en-
ergy inside the core, a 200-nm-diameter MNF leaves a large
amount of light (>90% in power) outside the core as evanescent
waves. For optical and photonic applications, a tight optical con-
finement is beneficial for reducing the modal diameter and in-
creasing the integrated density of optical circuits with less
crosstalk, while a large evanescent field is helpful for near-field

energy exchange between the MNFs and other 1D optical wave-
guides within a short interaction length, as well as for improving
the sensitivity of the MNF-based sensors and optomechanical
devices.

3.2.2 Engineerable waveguide dispersion

As the subwavelength-diameter MNF enables a considerably
high fraction of the mode power outside the core, a strongly
diameter-dependent waveguide dispersion can be achieved with

Fig. 8 Optical waveguiding properties of silica MNFs. (a) z-direction Poynting vectors of the fun-
damental mode in silica MNFs with different diameters at 633-nm wavelength in 3D view (upper
row) and 2D view (lower row)[30,32]. (b) Diameter dependence of the waveguide dispersion of fun-
damental modes in silica MNFs at the wavelengths of 633 nm and 1.5 μm, respectively[30].
(c) Calculated longitudinal electric-field intensity distribution of two evanescently coupled parallel
350-nm-diameter silica MNFs at 633-nm wavelength[154]. The overlapping length between two
MNFs is 4.8 μm. (d) Schematic diagram of two evanescently coupled identical parallel MNFs
(upper row)[190]. The lower row shows calculated cross-sectional electric-field intensity in the
x - and y -polarizations of fundamental modes in the MNF j ( j � 1 or 2). The radius a of two iden-
tical MNFs is 200 nm, and the input light wavelength is 800 nm. (e) Schematic illustration of the
crosstalk in two intersecting silica MNFs[213]. (f) Calculated output patterns of 400-nm-diameter
silica MNFs with flat, 30°-tapering-angled, and 60°-tapering-angled endfaces in air[195]. The input
light wavelength is set to be 633 nm. The white-line rectangles in (c) and (f) map the topography
profile of the MNFs.
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a magnitude much larger than that in a standard fiber. The group
velocity dispersion (GVD, Dw) of an optical MNF is defined as

Dw � d�v−1g �
dλ

; (14)

with group velocity given by

vg �
c
n21

·
β

k
·

1

1 − 2Δ�1 − η� : (15)

Based on Eqs. (14) and (15), Fig. 8(b) gives the dispersion of
the fundamental mode in air-clad MNFs as a function of the
MNF diameter at the wavelengths of 633 nm and 1.5 μm[30].
One can clearly see that the GVD in the normal dispersion re-
gime can go up to ns/(nm·km) level, while that of the weakly
guided glass fibers is on the order of tens of ps/(nm·km).
Moreover, the large waveguide dispersion in an MNF can also
dominate over the material dispersion. To be specific, Dw of an
800-nm diameter MNF is about −1.4 ns∕�nm · km� at 1.5-μm
wavelength, which is ∼70 times larger than that of the material
dispersion. Therefore, we can finely tailor the total dispersion
(combined material and waveguide dispersions) to be zero, pos-
itive, or considerably negative by controlling the MNF diameter
and length. In practice, effective dispersion management
using subwavelength-diameter MNFs has been widely applied
for supercontinuum generation[78,80], FWM[75], ultrafast fiber
lasers[82,83,209,210], and quantum optics[211,212].

3.2.3 Near-field coupling and crosstalk between two MNFs

The aforementioned waveguiding properties are basically ap-
propriate for single optical MNFs. The investigation of the mu-
tual interaction of waveguiding modes between two optical
MNFs is also important for photonic applications. When two
parallel MNFs are in close contact, the evanescently coupled
MNFs with high index contrast cannot be treated as weakly
coupled systems. In this case, it is difficult to perform the
calculation analytically and thus numerical methods are more ap-
propriate. In 2007, Huang et al. investigated evanescent coupling
between two air-clad parallel MNFs by means of the finite-
difference time-domain (FDTD) simulation[154]. Figure 8(c)
presents the longitudinal electric-field intensity distribution of
two parallel evanescently coupled silica MNFs (350 nm in
diameter) at 633-nm wavelength. For the case of two parallel
MNFs with a certain distance [see Fig. 8(d), upper row], Le
Kien et al. investigated the coupling of fundamental waveguid-
ing modes in two identical parallel MNFs based on the coupled
mode theory[190]. The lower row of Fig. 8(d) shows the cross-sec-
tional profiles of the electric-field intensity distributions at 800-
nm wavelength in the x- and y-polarized fundamental modes of
a single MNF (400 nm in diameter), which are symmetric with
respect to the principal axes x and y. On this basis, Le Kien et al.
studied the optical force and optical trap of an atom around the
middle between two coupled identical parallel MNFs over the
next few years[191–193]. The optical forces between the MNFs
were attractive for the fields of symmetric modes (i.e., even
modes) and repulsive for the fields of antisymmetric modes
(i.e., odd modes). For a ground-state cesium atom around the
middle of two coupled identical parallel optical MNFs, a net
trapping potential with a significant depth of about 1 mK, a large
scattering-limited coherence time of several seconds, and a large
recoil-heating-limited trap lifetime of several hours can be
obtained by properly choosing realistic parameters. Such a

twin-MNF structure can also be used for highly efficient
single-photon collection, with optimal coupling efficiency
>50%[194]. When the mode overlapping and coupling between
two nanowaveguides exceed a certain degree, strong mode
coupling occurs. In 2022, in a coupled nanowire pair (CNP),
Wu et al.[196] reported strong mode coupling induced slit wave-
guiding mode, in which an ultra-confined optical field was gen-
erated with an optical confinement down to sub-1-nm level
(∼λ∕1000) and a peak-to-background ratio of ∼30 dB. Shortly
after, Yang et al. proposed a waveguiding scheme to generate
such a sub-nanometer-confined optical field using a tapered op-
tical fiber[197], showing great flexibilities for narrow linewidth,
broadband tunability, and ultrafast pulsed operation. More re-
cently, Yang et al. reported a similar mode-coupling-induced
nano-slit mode in a coupled glassMNF system, showing the pos-
sibility of generating a sub-nm-thick blade-like optical field[198].
With the same scale as a small molecule, this kind of confined
optical field is promising for super-resolution nanoscopy,
atom/molecule manipulation, and ultra-sensitive detection.

Besides parallel MNFs, coupling between two intersecting
MNFs has been investigated. In 2019, Li et al. investigated
the crosstalk between two intersecting optical MNFs[213], as
schematically shown in Fig. 8(e). When the intersection angle
is large enough (e.g., >60°), the crosstalk of two single-mode
MNFs can be better than −20 dB. For a perpendicular intersec-
tion (i.e., intersection angle of 90°), the crosstalk is minimized to
be better than −33 dB. Meanwhile, the crosstalk is not only in-
tersection-angle-dependent, but also related to the MNF diam-
eter and separation of two MNFs. Following these results, it is
possible to design a close arrangement of the optical MNFs with
acceptable crosstalk.

3.2.4 Endface output patterns

As a kind of quasi-1D optical waveguide structure on the micro/
nanoscale, glass MNFs with diameters smaller than the light
wavelength are promising for tailoring endface output patterns,
which is highly desirable in many photonic applications like
subwavelength-dimension light beams[214], optical probes[215],
and point sources[216,217]. In 2007, Ma et al. exploited a near-field
scanning optical microscope (NSOM) to scan the endfaces
of glass MNFs (including silica and tellurite MNFs) and ob-
tained the endface output patterns of the MNFs on a MgF2 sub-
strate[218]. To further investigate the longitudinal-field-intensity
distribution of the MNFs, Wang et al. numerically calculated
the output patterns of the MNFs at 633-nm wavelength by
means of a three-dimensional finite-difference time-domain
(3D-FDTD) approach[195]. For reference, Fig. 8(f) shows the cal-
culated longitudinal field-intensity distribution of 400-nm-
diameter MNFs with flat and tapered endfaces. Compared with
standard optical fibers, glass MNFs possess much lower reflec-
tance (e.g., with a flat endface, the reflectance is about 2% in
glass MNFs and 4% in standard optical fibers). For the MNFs
with tapered endfaces, the light output from the tapered tip
spreads out symmetrically along the propagation direction.
Interestingly, the smaller tapering angle yields a larger diver-
gence of the output from the tapered tip, which is well suitable
for the generation of point sources.

3.3 Optical Loss

For standard single-mode fibers, the minimum transmission loss
(e.g., 0.14 dB/km at 1550-nm wavelength[219]) is generally
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determined by the fundamental scattering and intrinsic absorp-
tion of silica glass. As the diameter decreases to the subwave-
length scale, due to the decreased mode area, a high-fraction
evanescent field, and normally open-air clad of the MNFs,
the optical transmittance is very sensitive to a number of factors,
including surface roughness, diameter fluctuation, surface con-
tamination, and micro-bending, resulting in an overall loss
much higher than that of a standard silica fiber. Fortunately,
in the past 20 years, benefitting from the great progress in
the fiber fabrication and protection techniques, the optical loss
of an MNF has been significantly reduced.

3.3.1 Scattering loss

For a subwavelength-diameter optical MNF with a clean sur-
face, the scattering loss mainly arises from the surface rough-
ness. To be specific, the molten-drawn process of the MNFs
thermally activates capillary waves that are frozen onto the sur-
face at the glass transition temperature, inevitably leading to
quasi-long-range correlations in the surface height (i.e., surface
roughness)[103–105,220–222]. By a roughness-induced current model,
in 2007 Zhai and Tong numerically calculated the roughness-
induced scattering loss of silica, tellurite, phosphate, and silicon
MNFs with sinusoidally perturbed surfaces[223]. As shown in
Fig. 9(a), with the same roughness amplitude, the loss coeffi-
cient exhibits an oscillating dependence on the perturbation
period, indicating that the distribution of the perturbation period
(i.e., the correlation length) should be determined for accurate
estimation. Shortly after, by treating the perturbed surface as a
random field and determining the radiated power with averaging
over the perturbation ensemble, Kovalenko et al. investigated
the radiation losses of optical MNFs with random rough surfa-
ces in the assumption of Gaussian statistics, and estimated the
loss value based on an inverse-square perturbation power spec-
trum[224]. Around the same time, by considering the nonadiabatic
intermodal transition, Sumetsky investigated the radiation loss
of a subwavelength-diameter MNF introduced by a tiny intrinsic
nonuniformity, and showed an exponential dependence of the
loss on the MNF diameter[225], with an important conclusion that
the allowed minimum diameter of an optical MNF is about 1/10
the vacuum wavelength of the guided light. Subsequently, with
an experimental test on a tapered fiber, Sumetsky et al. demon-
strated that a subwavelength-diameter MNF can exhibit a low
loss only if its diameter is larger than a threshold value, which
is primarily determined by the wavelength and the characteristic
length of the long-range nonuniformity[226]. Later, Hartung et al.
determined that a threshold diameter of a 10-mm-long MNF ap-
pears to be D � 0.24λ[227]. In addition, considering that in some
cases the MNFs are supported on a substrate, the radiation loss
caused by the substrate has also been investigated[228,229].
Generally, to effectively alleviate or eliminate the optical loss
induced by the substrate, the MNF should not be too thin
and the refractive index of the substrate should be lower than
the effective index of the MNF. It is also important to mention
that the surface contamination of the MNF will give rise to a
further increase in radiation loss[35]. Typically, the contamination
originates from electrostatic and diffusive adhesion of ambient
microparticles and molecules. Therefore, an isolation of optical
MNFs to atmospherical contamination is necessary for practi-
cal use.

3.3.2 Bending loss

As freestanding waveguided structures, optical MNFs are
required to be bent in some cases. As a benefit of the high-
refractive-index contrast between the MNF and surrounding,
waveguiding modes can be tightly confined inside the MNF,
enabling a low bending loss through relatively sharp bends
(e.g., a few micrometers in bending radius). In 2009, Yu et al.
numerically calculated the bending loss of optical MNFs with
circular 90° bends by means of 3D-FDTD simulations [see
Fig. 9(b)][188]. It can be seen in Figs. 9(c) and 9(d) that when
waveguiding a 633-nm-wavelength light, a bent silica MNF
with a diameter of 350 nm and bending radius of 5 μm has
an acceptable bending loss of 1 dB/90°. However, as the bend-
ing radius reduces to 1 μm, a serious energy leakage occurs
around the bending region [see Fig. 9(c)]. In such a sharp bend,
to reduce the bending loss, one has to replace the silica MNF
with higher-refractive-index MNFs such as PS and ZnO MNFs
[see Fig. 9(d)]. Another possible approach proposed by Yang
et al. recently is to rearrange the mode field by placing Au NPs
around the inner side of the bent MNF[189]. Owing to the local-
ized surface plasmon resonance (LSPR), a considerable fraction
of energy can be confined to the interface of the Au NPs and the
optical MNF, leading to a reduction in the bending loss. In
addition, it is found that, compared with suspended MNF, in
a substrate-supported MNF, the bending radius should be larger
to guarantee a low propagation loss[230].

3.3.3 Optical absorption

As is well known, the intrinsic absorption of silica glass is very
low in its optically transparent window. However, in the high-
temperature taper-drawing process, the six-membered rings of
the amorphous silica are likely to deform to three-membered
rings (i.e., strained Si-O-Si bonds), as the precursor sites for
Si and O dangling bonds [see Fig. 9(e)][231–234]. It has been dem-
onstrated that the surface dangling bonds of the MNFs will be
photoactivated by a pulsed laser/high-power CW laser, and act
as point defects[54,233,234]. Such point defects can be identified by
photoluminescence (PL) emission spectra. The point defects on
the MNF surface will give rise to an increase in surface rough-
ness and optical absorption, resulting in additional optical
losses. It is worth mentioning that the photothermal effect in-
duced by optical absorption is prominent when the MNFs
are operated under high optical power[54]. As shown in Fig. 9(f),
an evident temperature rise in a high-power waveguiding MNF
was measured using a knot resonator (e.g., the temperature of
the MNF operating at 5 W was 152°C).

3.3.4 Progresses in loss reduction in optical MNFs

With the improvement of the fabrication and characterization
techniques, the measured waveguiding losses of as-fabricated
MNFs, especially of subwavelength-diameter MNFs, have
been effectively reduced over the last 20 years. As summarized
in Fig. 10, since the first reported experimental loss of
∼0.1 dB∕mm at 1550-nm wavelength in a subwavelength-
diameter silica MNF in 2003[29], the loss has been reduced
quickly to a level of 0.001 dB/mm[31]. In 2014, Hoffman et al.
reported the lowest loss of 2.6 × 10−5 dB∕mm at 780-nm wave-
length in a 500-nm-diameter silica MNF[37], which is orders
of magnitude lower than all other available nanowaveguides
[see Fig. 11]. For long MNFs, in 2020 Yao et al. demonstrated
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ultra-long subwavelength-diameter MNFs (e.g., 15 cm in
length) with optical transmittance as high as 97.5% at 1550-
nm wavelength[40]. In the same year, Ruddell et al. reported silica

MNFs with diameters below 400 nm and transmission higher
than 99.9% at 852.3-nm wavelength[53], which were used for
constructing high-finesse fiber FP cavities. Besides silica,

Fig. 9 Optical losses and absorption of optical MNFs. (a) Roughness-induced radiation losses in
air-clad MNFs versus the perturbation period[223]. The amplitude of the surface roughness is as-
sumed to be 0.2 nm and the wavelength of the input light is 1550 nm. (b) Mathematical simulation
model of a circular 90° bent MNF[188]. Inset: topography profile of the bent MNF. (c) Electric-field
intensity distributions in the x–z plane (y � 0) of a 450-nm-diameter MNF at a wavelength of
633 nm, with bent radii of (I) 5 μm and (II) 1 μm. The output mode profiles of the 5-μm and
1-μm bent MNFs at the P1 transverse cross planes in (b) are shown in (III) and (IV), respectively.
The black solid lines map the topography profiles of the MNFs. (d) Bending losses of a 350-nm-
diameter silica MNF (I-line, squares), 350-nm-diameter PS MNF (II-line, circles), and 270-nm-
diameter ZnO MNF (III-line, triangles) at 633-nm wavelength (quasi-x and quasi-y polarizations)
as functions of the bending radius. (e) Schematic diagram of combined effects of the fiber heating,
mechanically tapering, and pulsed laser guiding processes on the structural changes of siloxane
rings[234]. Heating and mechanical stretching processes break the six-membered rings into highly
strained three-membered rings. Given the bandgap value of silica (∼9 eV), using a laser with pho-
ton energy in the range of ∼4–8 eV can break the highly strained three-membered rings and gen-
erate oxygen-dangling bonds. (f) Defect-absorption-induced temperature rise of a 1.2-μm-
diameter silica MNF as a function of the waveguiding power around 1550-nm wavelength[54].
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optical MNFs made of other glass materials have also been ex-
tensively studied. For example, in 2006, Brambilla et al. re-
ported the fabrication of compound-glass (e.g., lead-silicate
and bismuth-silicate) subwavelength-diameter optical MNFs[55],
with measured losses of 100 to 10−1 dB∕mm at 1550-nm wave-
length. In 2007, Mägi et al. reported an overall tapering loss of
3 dB for a biconical As2Se3 fiber taper (1.2 μm in diameter,
18 mm in MNF length, and 164 mm in total length) around
1550-nm wavelength[57]. In 2012, Baker and Rochette measured
a propagation loss of 5.2 × 10−2 dB∕mm at 1530-nm wave-
length in a PMMA-cladded chalcogenide MNF (450 nm in core
diameter, 13.7 μm in PMMA-cladding diameter)[235]. More stud-
ies on optical loss in chalcogenide MNFs have been reported[236].

3.3.5 High-power optical waveguiding

Although low-loss optical MNFs have been well-developed
since their first experimental demonstration, most of them are
operated in low-power regions, for example, <0.1W in CW or
averaged power. To further enhance the interaction between the
waveguiding mode and matters within the mode field, the most
straightforward method is increasing the waveguiding power in
the MNFs. Recently, Zhang et al. reported high-power CW op-
tical waveguiding in high-quality silica MNFs around 1550-nm
wavelength[54]. As seen in Fig. 12(a), the measured output power
(Pout) of a 1.1-μm-diameter changes quite linearly with the input
power (Pin), and the MNF maintains a high transmittance
(>95%) with waveguided power up to 13Wand a fiber diameter
down to 410 nm (i.e., ∼1∕4 of the vacuum wavelength). At such
high power, the maximum power density inside the MNF can be
higher than 23 W∕μm2 [see Fig. 12(b)]. The ultralow absorption
of the silica fiber (used as the preform), high precision in the
taper-drawing process, and high cleanliness of both taper-
drawing and testing environment enable 10-W-level optical
waveguiding in silica MNFs. Furthermore, there are no pre-
dominant single scattering points on the surface of MNFs when
waveguiding a high-power CW light, indicating that the upper
limit of the waveguiding power in an MNF will be higher. By
measuring the power-dependent temperature rise in the MNF, a
damage threshold of 70 W was predicted [see Fig. 9(f)].

3.3.6 Packages of optical MNFs

As we discussed previously, the surface contamination of the
MNFs (e.g., dust and particulate) will introduce additional op-
tical propagation loss. Generally, the degradation is more promi-
nent as the MNF becomes thinner. For the purpose of long-term
usage and stability of glass MNFs, adequate protection is highly
desirable. Typically, the package of glass MNFs can be catego-
rized into three types: polymer embedding, air-tight sealing, and
vacuum packaging.

(1) Polymer embedding
Low-refraction polymer is widely exploited to embed and

protect glass MNFs from optical degradation. In 2007,
Vienne et al. proposed to embed MNFs in a low-index fluoro-
polymer matrix, and experimentally demonstrated polymer-
embedded MNF resonators with Q-factors of 12000[241]. In
2008,Xu andBrambilla compared the effectiveness of packaging
of theMNFs in a perfluoro polymer (i.e., Teflon)[242].While a bare
MNF decreased with a rate of ∼0.2 dB∕h in optical transmit-
tance, the embedded MNF remained basically unchanged within
6 days. After that, a variety of low-loss, low-refractive-index
materials have been employed for MNF packaging, including
polydimethylsiloxane (PDMS)[243–247], Teflon[248,249], hydrophobic
aerogel[250], ultraviolet (UV) curable polymer[251,252], and high-
substitution hydroxypropyl cellulose[253,254]. Figure 13(a) illus-
trates a silica MNF embedded in a PDMS film[247], showing
the advantages of a small footprint, high flexibility, and conform-
ability to non-flat surfaces (e.g., a human hand).

(2) Air-tight sealing
Sealing the MNFs inside an air-tight box has also been com-

monly adopted. For example, in 2021 Bouhadida et al. carried
out long-term and repeatable measurements of optical transmit-
tance of a 1-μm-diameter MNF at 1.5-μm wavelength[255]. They
found that when the MNF was put in an airtight box, the deg-
radation rate of the optical transmittance was as low as −6.3 ×
10−3%∕day in several months. According to the degradation

Fig. 10 Optical losses of silica and As2Se3 MNFs over the last
20 years[29,31,33,37,41–43,53,143,211,235–237].

Fig. 11 Optical propagation losses of typical optical micro/nano-
waveguides with corresponding effectivemode areas[32,37,235,238–240].
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Fig. 12 High-power CW optical waveguiding in subwavelength-diameter silica MNFs[54]. (a) High-
power optical transmittance of a 1.1-μm-diameter MNF around 1550-nm wavelength, with a CW
waveguided power from 0 to 13 W. (b) Calculated diameter-dependent maximum power density in
the MNFs at a waveguided power of 1 W. Insets: cross-sectional power density distribution of
0.5-μm-diameter and 1.1-μm-diameter silica MNFs.

Fig. 13 Encapsulation of optical MNFs. (a) Schematic of an MNF embedded in a PDMS film on a
glass substrate[247]. Inset: photograph of an MNF-embedded PDMS patch attached to a human
hand. (b) Photograph of an optical MNF sealed in an airtight 3D-printed acrylic box, filled with
high-purity nitrogen gas[54]. (c) Long-term optical transmission of the MNF presented in (b) around
1550-nm wavelength. The waveguided power of the MNF is 12 W. (d) Photograph of an as-
fabricated MNF mounted on a U-shaped bracket, with two standard fiber pigtails fixed on both
sides of the bracket through the glue. (e) Photograph of an MNF sealed in an air-tight box.
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rate, they predicted an acceptable decrease of ∼10% in the op-
tical transmittance after more than 4 years. Recently, Zhang
et al. transferred an as-fabricated 1.2-μm-diameter MNF into
a 3D-printed acrylic box protected by high-purity nitrogen
gas [see Fig. 13(b)][54]. The encapsulated MNF shows an ability
to waveguide a high-power CW light around 1550-nm wave-
length for long-term operation. Specifically, the MNFwas tested
at 12-W power continuously for 20 min every day for 2 months.
Over the whole test period of 2 months, the optical transmittance
of the MNF remained around 95%, as shown in Fig. 13(c).
Apart from an airtight box, other sealed chambers have also
been applied to satisfy various experimental requirements, for
example, capillary[256–258] and stainless steel tube[92,259].

(3) Vacuum treating
For atom optics, silica MNFs are usually installed in a vac-

uum chamber. During the installation procedure, a flux of argon
gas is maintained to protect the MNF surface from pollution[260].
After the introduction of atom vapor, one of the major chal-
lenges is that the warm atoms will accumulate on the MNF sur-
face, leading to optical scattering of waveguide modes and
consequently, a drastic degradation in optical transmission.
For instance, Lai et al. reported that the transmission of a
sub-500-nm-diameter silica MNF degraded to 1.5% of its initial
value in rubidium vapor in a full 2700-s run[261]. In this scheme,
the base pressure and temperature in the vacuum chamber were
10−7 Torr and ∼60°C, respectively. To alleviate the atom accu-
mulation, they designed a heating unit to raise the surface tem-
perature of the MNF, enabling the stable preservation of the
MNF with a relatively high optical transmittance (∼30%) sur-
rounded by a high-density rubidium vapor. Afterwards, Lamsal
et al. employed metastable xenon as a promising alternative to
rubidium[262,263], in which a sub-500-nm-diameter silica MNF re-
sided in a vacuum chamber backfilled with xenon gas. Using
this low-pressure system (around 30 mTorr), they demonstrated
a complete lack of optical transmission degradation in a
350-nm-diameter silica MNF over several hours[263].

In addition, safe and convenient handling of the MNFs with-
out breaking is also required in experiments. For this purpose, a
U-shaped bracket is typically employed for detaching
an as-fabricated MNF from the taper-drawing system [see
Fig. 13(d)] and transferring it to other places, such as an air-tight
box for surface protection [see Fig. 13(e)].

3.4 Nonlinear Optical Properties

The above-mentioned optical properties are in the realm of lin-
ear optics, in which the induced polarizability P has a linear
relationship with the electric-field intensity. This is valid only
when the power density of the waveguiding modes is low. For
a high-power optical waveguiding MNF (in pulsed or high-
power CW), the nonlinear effect should be considered, in which
the optical response could be described by the relationship[264]

P � ε0�χ�1�E� χ�2�E2 � χ�3�E3 �…	; (16)

where ε0 is the vacuum permittivity, χ�1� is the linear susceptibil-
ity, and χ�2� and χ�3� are the second- and third-order nonlinear
optical susceptibilities, respectively. In the nonlinear optical
processes, χ�2� is associated with second-order nonlinear effects
such as SHG, sum-frequency and difference-frequency genera-
tion (SFG and DFG), and optical parametric oscillation. χ�3� is

related to third-order nonlinear effects including supercontin-
uum generation, THG, BS, SRS, FWM, and optical Kerr effect.

As we reviewed in Section 3.2, the tight optical confine-
ment, long interaction length, and large diameter-dependent
dispersion make optical MNFs excellent candidates for nonlin-
ear optical processes. For example, the power density of the
evanescent field can be enhanced to 108 W∕cm2 in a 340-
nm-diameter silica MNF waveguiding a 1-W 780-nm-wave-
length light[20]. Figure 14(a) shows the wavelength-dependent
GVD in silica MNFs. For a given MNF diameter, there is a
maximum value of the GVD (on the order of thousands of
ps · nm−1 · km−1) in the normal dispersion region. Generally,
the optical nonlinearity of photonic waveguides is described
by the nonlinear parameter γ as[68]

γ � n2ω0

cAeff

; (17)

where n2 is a nonlinear-index coefficient (for silica,
n2 � 2.7 × 10−20 m2∕W[71]), ω0 is the angular frequency, c is
the speed of light in vacuum, and Aeff is known as the effective
mode area of the waveguiding modes, which is expressed as[68]

Aeff �

�RR∞−∞ jE�x; y�j2dxdy
�
2

RR
∞−∞ jE�x; y�j4dxdy : (18)

Figure 14(b) plots the diameter-dependent nonlinear param-
eter of silica MNFs at a wavelength of 532 nm. It is observed
that the 350-nm-diameter MNF has a maximum nonlinear
parameter of ∼1500 W−1 km−1, and the dispersion coefficient
falls in the vicinity of the zero-dispersion region. For compari-
son, the zero-dispersion wavelength of the silica MNFs can be
much shorter than that of a standard optical fiber (around 1310-
nm wavelength). Moreover, the zero-dispersion wavelength is
also diameter-dependent, which provides great convenience
for dispersion management in nonlinear processes. In this sub-
section, we will provide an overview of the nonlinear optical
properties in optical MNFs.

3.4.1 Pulse propagation

Generally, for nonlinear applications, ultrashort pulses with high
peak power are used to achieve a high nonlinear conversion ef-
ficiency. To study the femtosecond pulse propagation in a sub-
wavelength-diameter optical MNF, in 2004 Kolesik et al.
proposed a theoretical model for simulation according to a
corrected nonlinear Schrödinger equation[265]. Based on the theo-
retical framework, supercontinuum generation in optical MNFs
can be accurately modeled[79,266]. In 2005, Foster et al. experi-
mentally demonstrated the soliton-effect self-compression of
ultrafast pulses from 70 to 6.8 fs[81], corresponding to a compres-
sion factor of 10.29 and a quality factor of 0.73. Using a non-
linear-envelope equation, they predicted that self-compression
could be further down to single-cycle duration. In 2012,
Lægsgaard developed a full-vectorial nonlinear propagation for-
malism for studying the spectrum evolution of short broadband
pulses in fiber tapers[267]. In this method, they proposed a per-
turbative scheme for interpolating fiber parameters along the
taper, which provides higher accuracy. Benefitting from the
large effective nonlinearity and broad region of anomalous
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GVD of the MNFs, one can utilize optical MNFs with
specific diameters to compress the pulse.

3.4.2 SHG and THG

Harmonic generation including SHG and THG is a kind of non-
linear optical process, in which new signal sources with short
wavelengths can be generated. With the rapid development
of fiber technology, fiber-based harmonic generation has re-
ceived much attention, showing the advantages of small

footprint, long interaction length, good stability, and low cost.
Generally, the SHG is very weak in a silica fiber due to the
central-symmetry nature of an amorphous silica. However,
when the fiber diameter decreases to the subwavelength scale,
the surface dipole and bulk multipole nonlinearities will contrib-
ute evidently to the second-order nonlinearity. The theoretical
framework of the SHG in MNFs has been well-studied since
2010[268–270]. For efficient SHG, intermodal phase matching and
high mode overlapping are highly desirable. In the small-signal

Fig. 14 Nonlinear optical properties of optical MNFs. (a) Wavelength dependence of the GVD with
different MNF diameters. (b) Nonlinear coefficient of silica MNFs versus the fiber diameter at 532-
nm wavelength. Spectra of the (c) SHG and (d) THG in a silica MNF (779 nm in diameter, 7 cm in
length) pumped by a 5-W-power CW light[54]. The optimal phase matching of the SHG and THG is
achieved at wavelengths of 1558.2 and 1572.5 nm, respectively. SH, second harmonic; TH, third
harmonic. Insets of (c) and (d) show optical microscope images of output spots of the SH and TH
signals at the output end of the standard fiber connected with the MNF, respectively.
(e) Supercontinuum generation in a silica MNF pumped by 532-nm-wavelength ns pulses[31], with
output far-field patterns from the MNF at (I) low and (II) maximum powers. The pattern in (II) was
passed through 10-nm bandpass filters at the center wavelengths of (III) 633, (IV) 589, and (V)
450 nm.
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limit, the SHG process can be modeled by the following
equation:

dA2

dz
− iρ2A2

1 exp�iΔβz� � 0; (19)

where A1 and A2 are the amplitudes of the fundamental and
SHG modes, Δβ � β2 − 2β1 is the propagation constant mis-
match between the SHG signal and the pump, and ρ2 represents
the overlap between the fundamental and the second-harmonic
modes, which is expressed as

ρ2 �
ω2

2A2
1

R
dr⊥e�2 · P

�2�

Re
R
dr⊥�e�2 × h2	z

; (20)

where ω2 is the angular frequency of the SHG signal, P�2� is the
second-order nonlinear polarization (including both dipole con-
tributions from the surface and multipole contributions from the
bulk), r⊥ is the vector normal to the surface, and the electric and
magnetic fields of the SH modes are expressed as E�r;ω2� �
A2e2�r⊥;ω2� exp�i�β2z − ω2t�	 and H�r;ω2� � A2h2�r⊥;ω2�
exp�i�β2z − ω2t�	.

In 2013, Gouveia et al. experimentally exploited a 700-nm-
diameter silica MNF to realize the intermodal phase-matching
SHG, with conversion efficiency up to 2.5 × 10−9 when pumped
with 1550-nm-wavelength pulses (90 W in peak power)[72]. By
assembling an MNF into a loop resonator that incorporated the
phase-matched region of the MNF, they further improved the
efficiency by 5.7 times. Very recently, Zhang et al. proposed
to accomplish perfect intermodal phase matching and maximum
mode overlapping between the fundamental and the harmonic
modes by precisely controlling the fiber diameter and finely
tuning input light wavelength. Using an 11.3-W 1558.2-nm-
wavelength CW light [see Fig. 14(c)], they demonstrated
CW-pumped SHG, with conversion efficiency up to 8.2 × 10−8,
which is higher than those pumped by short pulses[54]. Besides
a single MNF structure, other MNF-based structures have been
reported for the enhancement of the SHG effect. For example, in
2013 Luo et al. proposed a slot MNF configuration to enhance
surface power density and nonlinearity, showing a 25-fold in-
crease in the SHG conversion efficiency as compared to a
circular-cross-section MNF[271]. In 2018, Wu et al. employed
an optical MNF coupler to achieve quasi-phase matching by
coupling compensation. High-efficiency SHG was experimen-
tally demonstrated, with conversion efficiency four orders of
magnitude higher than that of each individual MNF[272].

Compared with the SHG, THG is more widely studied in
optical MNFs. In 2003, Akimov et al. demonstrated the
THG in a 2.6-μm-diameter silica MNF using 30-fs 1250-nm-
wavelength pulses[70]. In the following 20 years, a series of
theoretical and experimental studies have been carried out to
optimize the conversion efficiency in nonlinear optical proc-
esses[71,273–280].

For an air-clad optical MNF with a step-index profile, the
third-order nonlinear susceptibility χ�3� is assumed to be z-inde-
pendent, whose value is constant within the cross section of the
MNF while zero outside of the MNF. Then the THG process can
be modeled by the following coupled-mode equations[71]:

∂A1

∂z
� in2k��J1jA1j2 � 2J2jA3j2�A1 � J3A�2

1 A3eiδβz	;
∂A3

∂z
� in2k��6J2jA1j2 � 3J5jA3j2�A3 � J�3A

3
1A3e−iδβz	; �21�

where A1 and A3 are the amplitudes of the fundamental and
THG modes, δβ � β3 − 3β1 is the mismatch of the propagation
constant between the third-order harmonic signal and the pump,
and Ji is nonlinear overlap integrals (as defined in Ref. [71]).
Among them, J1 and J5 govern the self-phase modulation of
the pump and the harmonic signal, J2 is related to the cross-
phase modulation, and J3 represents the overlap between the
pump and the third-harmonic modes.

To achieve efficient THG in an optical MNF, the intermodal
phase mismatch (i.e., the propagation-constant mismatch be-
tween the high-order modes of the third-order harmonic signal
and the fundamental mode of the pump) should be as small as
possible, and the overlap integral J3 should be sufficiently large.
In 2005, Grubsky and Savchenko theoretically predicted that
with an appropriate MNF diameter, an ideal conversion effi-
ciency could be achieved as high as 50% in a 1-cm-long silica
MNF[71]. However, it is difficult to obtain such high efficiency
because the inherent nonuniformity of optical MNFs may ad-
versely affect the perfect phase matching. In recent years, sev-
eral effective approaches to realizing quasi-phase matching
between the fundamental pump mode and the third-harmonic
modes have been reported by Jiang et al. and Hao et al., such
as the employment of a counter-propagating pulse train[277], non-
linear phase modulation[278,279], and mechanical strain[280].
Indeed, the THG conversion efficiency excited by short laser
pulses reported so far is basically on the order ranging from
10−7 to 10−4. Additionally, pumped with a high-power CW
light, high-efficiency THG could also be observed in a 779-nm-
diameter MNF (1572.5 nm in fundamental light wavelength), as
presented in Fig. 14(d). When the waveguided power of the
MNF was increased to 11.3 W, the conversion efficiency was
measured as 4.9 × 10−6, falling within the range of typical re-
sults obtained with short pulses. Since silica MNFs have the
potential to waveguide a higher-power light (both in CW and
pulsed), the higher conversion efficiency of the harmonic gen-
eration is foreseeable in the future.

3.4.3 Four-wave mixing

The FWM process is a third-order optical nonlinear process con-
taining the creation of signal and idler photons (ωs and ωi) and
the annihilation of two pump photons (ωp1 and ωp2) simultane-
ously. This process is governed by the conservation of the en-
ergy and momentum: ωs � ωi � ωp1 � ωp2, and βp1 � βp2 �
βs � βi. The tailorable dispersion characteristics of optical
MNFs are beneficial for efficient FWM. In 2012, Li et al. re-
ported for the first time the cascaded FWM in optical MNFs
pumped by two synchronized picosecond lasers (around 850-
nm wavelength)[75]. They showed that the spectrum range could
span from several hundreds of nanometers to almost one octave,
depending on the MNF diameter, pump power, and wavelength
detuning of the two pumps. In practice, the FWM in an optical
MNF has been widely applied in quantum optics and nonlinear
optics. For example, in 2013 Cui et al. utilized spontaneous
FWM in a 15-cm-long MNF to generate correlated photon
pairs[211]. Likewise, in 2019 Kim et al. realized the genera-
tion of photon pairs via a spontaneous FWM process using a
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12-cm-long 615-nm-diameter MNF[281]. In 2021, Delaye et al.
reported the emission of photon pairs by the FWM in a silica
MNF, with a high coincidence to accidental ratio and high pair
emission rate[212]. On the other hand, Abdul Khudus et al. dem-
onstrated parametric amplification through the FWM in silica
MNFs with a wavelength band over 1000 nm in 2016[282].

3.4.4 Brillouin scattering

BS is known as a third-order nonlinear process that involves the
interaction between an electromagnetic wave and an acoustic
wave. An incident photon at frequency ω is scattered into an
up- or downshifted photon with frequencies ω� ΩB depending
on the phase-matching condition, where frequency ΩB is the
frequency of the acoustic field. Since its discovery in optical
fibers in 1972[283], the BS has been extensively studied in both
fundamental and applied sciences[284]. Over the past decade, the
advent of optical MNFs has driven immense scientific interest in
studying the photon-phonon interaction in subwavelength-di-
mension structures. Compared with standard optical fibers, op-
tical MNFs with low dimension and hard mechanical boundary
conditions enable the enhancement of optical nonlinearity and
tightly confined modes of both photons and phonons. It has
been reported by Beugnot et al. in 2014 that in a subwave-
length-diameter MNF, two kinds of acoustic modes will be ex-
cited during the backward BS process: hybrid acoustic wave
(HAW) and surface acoustic wave (SAW) modes[73]. The
SAWs propagate at a velocity between 0.87 and 0.95 of a shear
wave velocity VS (for fused silica, VS � 3400 m∕s), leading to
new optical sidebands down-shifted from 6 GHz in the spec-
trum. The HAWs propagate at an intermediate speed between
shear and longitudinal waves with acoustic frequencies of
∼9 GHz. Interestingly, the SAWs in the MNFs are inherently
sensitive to surface features and defects, which offers attractive
potential for optical sensing, detection, strain measurement, and
optomechanics[63,74,92,285]. Another novel effect, the so-called BS
self-cancellation, was demonstrated experimentally by Florez
et al. in 2016[286]. Specifically, they scanned the MNF diameter
to precisely control the acoustic and optical mode profiles,
where the photo-elastic and moving-boundary effects canceled
out exactly. In 2018, Chow et al. utilized a phase correlation
distributed Brillouin approach to experimentally demonstrate
the presence of surface and hybrid acoustic waves at distinct
fiber locations[287]. Apart from the backward BS, the forward
BS in silica MNFs has been investigated over the last few
years[171,288,289]. In 2018, Jarschel et al. constructed a pump
and probe forward BS setup to excite the fundamental
torsional-radial acoustic mode in a silica MNF[171]. The fre-
quency shift of the torsional-radial acoustic mode can be used
to characterize the MNF diameter, as has been mentioned in
Section 2.1.4. After that, two theoretical frameworks were re-
ported by Cao et al. on the inter-mode forward BS[288] and
Brillouin gain characteristics[289] in silica MNFs. Very recently,
Xu et al. realized strong forward intermodal optomechanical
interactions in a few-mode optical MNF, with long phonon life-
times (>2 μs) and strong coupling (>400 W−1 m−1)[93].

3.4.5 Stimulated Raman scattering

The SRS is an inelastic third-order nonlinear process in which
energy is transferred from input photons to molecular vibra-
tions. Unlike the stimulated BS with a photon-to-acoustic pho-
non process, the SRS involves a photon-to-optical phonon
interaction. In the SRS process, a Stokes (anti-Stokes) photon

at a longer (shorter) wavelength with respect to the pump
wavelength will be generated. As discussed in Section 3.2, sub-
wavelength-diameter optical MNFs possess a high-fraction
evanescent field with high optical intensity. Such a unique evan-
escent field can create a strong interaction with external materi-
als (with high Raman gain). By this way, in 2013 Shan et al.
theoretically investigated[76] and experimentally achieved[77] the
SRS in a liquid (e.g., ethanol and mixture of toluene and etha-
nol) pumped by the evanescent fields of silica MNFs.
In 2019, Bouhadida et al. developed the external Raman con-
version efficiency to 60% with high reproducibility by optimiz-
ing the MNF diameter[290]. Besides the liquid surroundings, the
evanescent-wave SRS can also be achieved with a silica MNF
immersed in the gas. It has been reported by Qi et al. in 2019
that the SRS efficiency of an MNF surrounded by hydrogen gas
is orders of magnitude higher than that in a hollow-core pho-
tonic crystal fiber[291]. Relying on the SRS spectroscopy, a novel
optical sensing and detection technique with fast response, high
sensitivity, and wide dynamic range is on the rise.

3.4.6 Supercontinuum generation

Supercontinuum generation is a kind of complex optical non-
linear process that involves self-phase modulation, Raman scat-
tering, and FWM. Since its first experimental observation in
borosilicate glass in 1970[292], the supercontinuum generation
has received extensive attention. In 1976, Lin and Stolen dem-
onstrated supercontinuum generation in a 19.5-m silica fiber us-
ing a 20-kW 10-ns dye-laser pulse[293]. In principle, to generate a
supercontinuum source with a wide spectral range in an optical
waveguide, the high optical power density of waveguiding
modes, high optical nonlinearity of the waveguide, long nonlin-
ear interaction length, and flat zero-dispersion region are re-
quired. The flexibly controllable dispersion and high nonlinear
parameter of subwavelength optical MNFs just satisfy these de-
mands[265,294] [see Figs. 14(a) and 14(b)]. In 2004, Leon-Saval
et al. reported that supercontinuum spectra with a 400-nm
broadening could be observed from 20-mm-long sub-microm-
eter optical MNFs pumped by 532-nm-wavelength ns pulses[31].
When the peak power is sufficiently high, a significant broad-
ening of the supercontinuum spectrum occurs and the supercon-
tinuum white-light source can be extracted from the output
endface of a standard fiber connected with a silica MNF [see
Fig. 14(e)]. Afterwards, supercontinuum generation in silica
MNFs has been studied at the central wavelengths of 800[79,295]

and 1064 nm[78]. From the numerical simulation, Hartung et al.
also reported the possibility of using optical MNFs with normal
dispersion behavior for coherent supercontinuum generation at
deep-UV wavelengths[80]. The short length of the employed
silica MNFs allows a low loss in the UV-wavelength edge, mak-
ing them ideal candidates for deep-UV supercontinuum gener-
ation. Meanwhile, chalcogenide glasses have broadband
intrinsic transparency (0.5 to 25 μm) and high optical nonline-
arity (for the As2Se3, n2 � 1.1 × 10−17 m2∕W[296]) for super-
continuum generation from visible to infrared ranges.

Compared with silica MNFs, the chalcogenide MNFs taper
drawn from standard chalcogenide fibers show greater potential
in nonlinear optics. Besides the UV and visible spectrum re-
gions, NIR and mid-infrared (MIR) supercontinuum sources
generated from highly nonlinear chalcogenide-glass MNFs have
received a lot of attention in the past 20 years. In 2008, Yeom
et al. first demonstrated low-threshold supercontinuum genera-
tion around 1550-nm wavelength using an As2Se3 MNF. In the

Zhang et al.: Optical microfiber or nanofiber: a miniature fiber-optic platform for nanophotonics

Photonics Insights R02-19 2024 • Vol. 3(1)



following years, several interesting investigations on the NIR
supercontinuum generation in chalcogenide-glass MNFs have
been reported[297–299]. For the MIR supercontinuum generation,
Marandi et al. achieved a spectrum broadening from 2.2 to 5 μm
at 40 dB below the peak in 2012[300]. In 2014, Al-kadry et al.
demonstrated two-octave MIR supercontinuum generation from
1.1 to 4.4 μm at −30 dB[301]. In 2015, using a 15-cm-length
As2Se3-As2S3 chalcogenide MNF (1.9 μm in core diameter),
Sun et al. realized the supercontinuum generation spanning
from 1.5 μm to beyond 4.8 μm at −20 dB[302]. In 2017,
Hudson et al. coupled 4.2-kW-power pulses into a polymer-pro-
tected As2Se3∕As2S3 MNF and successfully demonstrated a
spectrum spanning from 1.8 to 9.5 μm at −20 dB points (2.4
octaves)[303]. In the same year, Wang et al. reported a broadband
spectrum spanning from 1.4 to 7.2 μm in chalcogenide tapered
fibers pumped in the normal dispersion regime[304]. The
generated MIR supercontinuum sources have found important
implications in the applications of molecular spectroscopy,
MIR frequency comb, early cancer diagnosis, and remote sens-
ing[147,305,306].

4 Mechanical Behavior
As an important property of an optical MNF, the mechanical
behavior, basically depending on the material used, is different
from that of standard optical fibers with typical diameters
around 125 μm. Generally, similar to mechanical behaviors
of many other 1D nanostructures that have been extensively in-
vestigated[307–310], owing to the decreased defect size and density
with decreasing fiber diameter, the silica MNF demonstrates en-
hanced mechanical properties regarding tensile strength and
allowed strain, which is beneficial for flexible manipulation,
characterization, and functionalization of the MNF. Meanwhile,
the low geometric dimension, high material purity, and struc-
tural uniformity of the MNF make it an ideal platform for in-
vestigating the deformation behaviors of such covalently
bonded nanostructures, as well as offering a bridge between ex-
periments and molecular dynamics simulations. This section re-
views the mechanical properties of both elastic and plastic
deformations of silica MNFs, with emphasis on elastic modulus,
tensile strength, and linear strain, which are within the elastic
limit in most applications.

4.1 Elastic Deformation

For an optical MNF with a diameter close to the wavelength of
the waveguided light, the allowed minimum bending radius
RBmin is determined by the bending loss[152,188]. Typically, for
low-loss waveguiding, RBmin is much larger than the allowed
minimum elastic bending radius REmin. Thus, in optical appli-
cations, almost all deformation of the silica MNF is elastic.

4.1.1 Elastic modulus

The elastic modulus, which reflects the stiffness of solid mate-
rials, is a crucial indicator for describing the elastic properties,
and it varies significantly among different materials. For amor-
phous silica, the elastic modulus measured in bulk glass is typ-
ically around 72 GPa. The question of whether the elastic
modulus of amorphous silica changes with different physical
sizes is a topic of interest, and a number of simulations and ex-
periments have been conducted on low-dimensional structures,
including films, micro/nanoparticles, and MNFs[311–313]. Among
these structures, the MNF is a widely investigated quasi-1D

structure due to its excellent diameter uniformity, high surface
quality, and convenience for measurement of mechanical prop-
erties. There is sufficient experimental evidence that silica
MNFs with diameters larger than 50 nm still exhibit the elastic
modulus close to bulk amorphous silica. For example, in 2004
Chen et al. determined the elastic modulus of MNFs in the
diameter range of 23.3–133 μm by resonance vibration mea-
surements, and obtained a mean value of �70� 6� GPa[314].
In 2006, using a scanning probe microscope, Silva et al. directly
measured the elastic modulus of silica MNFs with diameters
ranging from 280 to 1950 nm, which varied from 68 to
76 GPa[315]. In the same year, utilizing an atomic force micro-
scope (AFM), Ni et al. measured the elastic modulus of ultrathin
silica MNFs with diameters ranging from 50 to 100 nm, and
obtained a modulus of �76.6� 7.2� GPa[316].

4.1.2 Elastic strain and tensile strength

The allowed elastic strain is a measure of the mechanical strength
of a structure. In the case of MNFs, elastic tensile strain and
tensile strength are two key factors that attract considerable at-
tention. There are two main reasons: firstly, in practical applica-
tions, it is challenging to directly apply axial compression strain
or stress to MNFs given their quasi-1D structure. Instead, bend-
ing and stretching are the most typical forms of strain loading.
Secondly, in terms of fracture, the fracture of MNFs usually oc-
curs when the tensile strength exceeds the failure limit, and the
allowed compression strength is typically higher than the tensile
strength. The relationship between the elastic strain ε and corre-
sponding tensile strength σ can be expressed as

σ � ζε; (22)

where ζ is the elastic modulus of the fiber material, which is
around 72 GPa for amorphous silica. Under elastic bending,
the tensile strength can be estimated as

σ � ζD
2RB

; (23)

where D is the MNF diameter and RB is the bending radius.
In 2003, by bending MNFs to the point of fracture, Tong

et al. estimated that the fracture strengths of silica MNFs were
typically higher than 5.5 GPa[29]. In 2009, Brambilla et al. di-
rectly measured the fracture strength of silica MNFs with diam-
eters from 120 to 600 nm by loading vertical tension. As shown
in Fig. 15(a), the measured fracture strength exceeds 10 GPa for
most MNFs, with maximum values in MNFs with diameters of
100–200 nm. The strength of the MNF is higher than that of
standard communication optical fibers (about 5 GPa)[317]. It is
worth mentioning that under large elastic strain, similar to that
observed in silica glass[318,319], nonlinear elasticity can also be
observed in an MNF. For example, in 2019 through the back-
ward BS in silica MNFs (660 and 930 nm in diameter, respec-
tively), Godet et al. experimentally verified the third-order
nonlinear behavior of elasticity when the tensile strain is larger
than 2%[63].

Meanwhile, the strength of silica MNFs is dependent on their
fabrication method. For instance, the strength of the MNF ob-
tained by hydrogen flame heating seems relatively low com-
pared with that obtained by electric heating or laser heating.
This is because the water molecules produced by the hydrogen
flame will partially enter the silica network through the chemical
reactions (≡Si-O-Si ≡�H2O↔ ≡ SiOH� HOSi≡), forming
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defects that reduce the strength of MNFs[320]. Similarly, when the
MNFs are exposed to the air for a prolonged period, water mol-
ecules and other molecules will attach to the fiber surface and
may lead to an accumulated decrease in strength. Therefore, ef-
fective packaging and isolating an MNF from environmental
contamination is also beneficial to maintain its excellent
mechanical properties.

4.2 Plastic Deformation

As an amorphous glass structure, a glass MNF can be plastically
deformed under certain conditions. So far, two approaches have
been studied for plastic deformation of MNFs: high-temperature
annealing under elastic deformation and room-temperature de-
formation in ultrathin MNFs. Annealing is a versatile approach
to plastically deforming glass MNFs with all diameters. When
an elastically deformed MNF is annealed under high tempera-
ture, the strain can be released and the deformation can be trans-
formed into permanent plastic deformation. In 2005, Tong
et al. annealed an elastically bent silica MNF for 2 h at 1400 K
in a vacuum (2 × 10−3 Pa) and obtained a permanent plastic
bend[321]. As shown in Fig. 15(b), sharp plastic bends (the bend-
ing radius of less than 1 μm) can be achieved by performing the
annealing-after-bending process. The annealing approach is also
applicable to other types of glass MNFs. For example, Fig. 15(c)
shows sharp plastic bends made on a 170-nm-diameter tellurite
glass MNF[56]. Plastic deformation realized by such annealing-
after-bending process can avoid long-term fatigue and fracture

of sharply bent glass MNFs, and the geometry of the deforma-
tion can be designed and assembled before annealing.

For ultrathin silica MNFs, it is found that they can undergo
plastic deformation at room temperature, and can be employed
as an ideal platform for studying the deformation behaviors of
these covalently bonded nanostructures. In such cases, low-den-
sity electron beams and slower strain rates are commonly used.
For instance, in 2010 Zheng et al. showed that under room tem-
perature (∼300 K) and a strain rate>10−4 per second, and mod-
erate exposure to a low-intensity (<1.8 × 10−2 A∕cm2) electron
beam, a superplastic elongation>200% in tension was achieved
in a 36-nm-diameter silica nanofiber[322]. In 2016, Luo et al.
found that when the MNF diameter was below 18 nm, it would
undergo a brittle-to-ductile transition at room temperature, and
large tensile plastic elongation (up to 18%) could be realized at a
strain rate ranging from 10−2 to 10−4 per second, as shown in
Fig. 15(d)[323]. These studies may help understand the mechani-
cal behaviors of low-dimensional amorphous structures.

5 MNF-Based Applications
As a miniature fiber-optic platform, optical MNFs have been
extensively studied over the past two decades. Their remark-
able optical properties, including ultralow loss, tight optical
confinement, high-fraction accessible evanescent fields, and en-
gineerable waveguide dispersion, incorporated with a small
footprint and excellent mechanical properties, have inspired a
variety of possibilities from near-field coupling, passive optical
components, optical sensing, and fiber lasers to nonlinear optics,

Fig. 15 Mechanical properties of optical MNFs. (a) Dependence of fracture strengths of silica
MNFs on the MNF radius r [61]. (b) SEM image of a plastically bent silica MNF (800 nm in MNF
diameter)[321]. The sharp bent radius is less than 1 μm. (c) SEM image of a 170-nm-diameter tel-
lurite glass MNF with sharp plastic bends[56]. (d) Maximum plastic elongation of silica MNFs. The
horizontal dashed line (purple) indicates a reference line of 1%[323].
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optomechanics, and atom optics. Since a complete coverage of
these possibilities will be miscellaneous and lengthy, in this sec-
tion we introduce typical MNF-based applications in different
categories. Also, as MNF-based nonlinear optics has been intro-
duced in Section 3.4, we will not go into further detail here.

5.1 Near-Field Optical Coupling

As has been discussed in Section 3.3, optical MNFs have the
special advantages of low-loss waveguiding with tightly con-
fined high-fraction evanescent fields, which makes them favor-
able for compact and high-efficiency near-field optical coupling
with external structures on the micro/nanoscale. Assisted with
micro/nanomanipulation, a variety of MNF-based coupling
structures, including 1D optical waveguides, 2D materials,
and 3D micro-cavities, have been demonstrated, as introduced
in this section.

5.1.1 1D optical waveguides

1D optical waveguides with (sub)wavelength-scale cross sec-
tions are the mostly used micro/nanoscale waveguiding struc-
tures. Benefitting from the strong evanescent field, the
waveguiding modes of an optical MNF can be efficiently
coupled into a 1D photonic or even plasmonic waveguide via
near-field coupling. Figure 16(a) shows the near-field coupling
of two tellurite glass MNFs with diameters of 350 nm (top arm)
and 450 nm (bottom arm), respectively[56]. With a 633-nm-wave-
length light launching into the 450-nm-diameter MNF from the
bottom left arm, a certain portion of the light is coupled into and
waveguided along the 350-nm-diameter MNF (top arm). By
changing the coupling length and MNF diameters, the coupling
efficiency can be optimized (e.g., >95% with a coupling length
on 2-μm level[154]). The efficient evanescent-field coupling tech-
nique is also applicable to plasmonic nanowaveguides. In 2009,
Guo et al. reported direct coupling of photonic (e.g., silica

Fig. 16 Near-field optical coupling with 1D micro/nanowaveguides using silica MNFs. (a) Optical
microscope image of optical coupling of a 633-nm-wavelength light between two tellurite glass
MNFs with diameters of 350 (top arm) and 450 nm (bottom arm), respectively[56]. Optical micro-
scope images of a silica fiber taper coupled with a (b) 200-nm-diameter silver nanowire[324], (c) 450-
nm-diameter polyacrylamide MNF doped with fluorescein sodium salt (FSS-PAM MNF)[110],
(d) 170-nm-diameter CdS nanowire[330], and (e) 4.4-μm-diameter ice MNF[126]. The wavelength
of the light launched from the left side in (b)–(e) is 633, 355, 473, and 500 nm, respectively.
In particular, an obvious PL signal around the 550-nm wavelength of the FSS-PAM MNF is ob-
served in (d). (f) Schematic of an MNF-coupled SNSPD for NIR wavelengths[332]. (g) Optical micro-
scope image of an SU8 capped tapered fiber placed on the fork silicon-nitride-waveguide (SiN
WG) coupler for low-loss, high-bandwidth fiber-to-chip coupling[337]. (h) Optical microscope image
of a fiber-nanowire-silicon-waveguide cascade structure for efficient fiber-to-chip coupling[338]. The
operation wavelength ranges from 1520 to 1640 nm.
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MNFs or ZnO nanowires) and plasmonic nanowaveguides (Ag
nanowires) via near-field coupling [see Fig. 16(b)] with cou-
pling efficiency up to 80%, and further demonstrated hybrid
“photon-plasmon” functionalized components such as polariza-
tion splitters, Mach-Zehnder interferometers (MZIs), and micro-
ring resonators[324]. By optimizing the coupling conditions, in
2013 Li et al. demonstrated a coupling efficiency of up to
92% in a silica MNF-Ag nanowire structure[325]. Similarly, a
number of other types of 1D waveguides, including polymer
MNFs [see Fig. 16(c)][110], semiconductor nanowires (e.g., CdS,
CdSe, ZnO, and CdTe) [see Fig. 16(d)][326–330], ice MNFs[126],
niobium nitride (NBN) superconducting nanowire[331–333], and
on-chip silicon waveguides[334–338], have been evanescently
coupled using waveguiding MNFs to obtain efficient optical
coupling.

It is worth mentioning that MNF-assisted near-field optical
coupling also works at low temperatures. For reference,
Fig. 16(e) shows the coupling of a blue light (500 nm in wave-
length) from a silica MNF to an ice MNF at −70°C[126]. The
evident output from the right end of the ice MNF confirms
the efficient launching of the waveguiding mode of the ice MNF.
The low-temperature MNF-based coupling has also been
used in superconducting nanowire single-photon detectors
(SNSPDs). In 2017, You et al. reported a cascaded “standard fi-
ber-MNF-superconducting nanowire” coupling structure[331,332],
as shown in Fig. 16(f). Compared with the conventional pla-
nar-waveguide-based coupling structure, the MNF-based struc-
ture could offer higher coupling efficiency (up to 90%) between
the standard fiber and the NbN superconducting nanowire, ena-
bling high-performance fiber-compatible SNSPDs. Specifically,
at a temperature of 2.2 K, the overall detection efficiency reached
50% and 20% at the input light wavelengths of 1064 and
1550 nm, respectively. Later in 2019, by further optimizing
the coupling condition, Hou et al. improved the detection effi-
ciency to 66% and 45% at the wavelengths of 785 and
1550 nm, respectively, offering the possibility for ultra-wideband
weak-light detection with quantum-limit sensitivity[333].

Another notable example is MNF-assisted optical coupling
between standard single-mode fibers and on-chip planar
waveguides, which is one of the main challenges in silicon pho-
tonics[339]. In 2007, Zhang et al. reported end-fire coupling from
a subwavelength-diameter silica MNF to a silicon waveguide,
with coupling efficiency higher than 40% over a wide wave-
length range of 1300–1700 nm[334]. Later in 2011, Shen et al.
proposed optical coupling of a silica MNF and tapered silicon
waveguide, showing improved coupling efficiency higher than
80% in the wavelength range of 1300–1700 nm[335]. Similarly, in
2017 Chen et al. reported vertical near-field coupling of a
976-nm-wavelength CW light from an Er3�∕Yb3�-co-doped
tellurite glass MNF to a silicon racetrack resonator, and realized
waveguided luminescence at the telecommunication band[336]. In
2020, Khan et al. employed a capped, terminating, adiabatic ta-
pered fiber to couple with a fork silicon nitride (SiN) waveguide
[see Fig. 16(g)], demonstrating a coupling loss as low as 1.4 dB
around 1550-nm wavelength and a 3-dB bandwidth of
90 nm[337]. More recently, Jin et al. designed a cascaded coupling
structure of a “fiber-nanowire-silicon waveguide” for effective-
index matching in each coupling area [see Fig. 16(h)], enabling
bidirectional coupling efficiency as high as 90% and a 3-dB
bandwidth in excess of 100 nm (1520 to 1640 nm in wave-
length) for both TE and TM polarizations[338]. In addition, in
some cases where sharp fiber tapers are required (e.g., for

ultra-compact optical coupling), one can consider a scheme pro-
posed by Wu et al. recently[340]. A short-length fiber taper
(150 μm in length) with a nonlinearly shaped profile was fab-
ricated on the top of a cleaved SMF tip using the direct laser
writing method, allowing a relatively high optical transmittance
(∼77%) at 1550-nm wavelength.

5.1.2 2D materials

In recent years, owing to their broadband optical response, fast
relaxation, high nonlinearity, and controllable optoelectronic
properties, 2D materials have shown great potential for
nanophotonics[341,342]. However, due to their atomically thin
structures, light absorption is typically weak, and enhancing
light-matter interaction is an essential step towards high-effi-
ciency photonic applications in many situations. The tightly
confined high-fraction evanescent fields in optical MNFs
open a route for the enhancement of interaction between
waveguiding modes and 2D materials. Generally, two kinds
of methods including optical deposition[343] and micro/nanoma-
nipulation-enabled dry/wet transfer[344,345], can be used to realize
the integration of optical MNFs and 2D materials. To date, a
variety of 2D-material-integrated MNF photonic devices have
been demonstrated in a wide range of applications such as
all-optical signal processing[345–348], nonlinear optics[349], mode-
locked fiber lasers[343,348,350], optical sensing[351], and quantum op-
tics[352]. For example, Li et al. realized the near-field coupling of
graphene films and silica MNFs (∼1 μm in diameter) in 2014
[see Fig. 17(a)], and demonstrated an all-optical modulator with
a response time of 2.2 ps and modulation depth of 38%. Such a
graphene-clad-MNF structure can also serve as a saturable
absorber to realize ultrafast mode-locked pulse lasers, with ad-
vantages of low saturation intensities, ultrafast recovery times,
and wide wavelength ranges[350]. In 2019, Chen et al. reported a
tungsten disulfide (WS2)-clad-MNF structure and realized the
enhancement of PL and SHG through the evanescent-field cou-
pling[353]. In 2020, Jiang et al. integrated silica MNFs with
few-layer gallium selenide (GaSe) nanoflakes and achieved
high-efficiency second-order nonlinear processes including
the SHG and SFG [see Fig. 17(b)][349]. In 2022, Yap et al.
deposited MoS2 nanosheets onto an optical MNF and realized
a volatile-organic-compound sensor at room temperature [see
Fig. 17(c)], with high sensitivity of 0.0195, 0.0143, 0.0072,
and 0.0058 nm/ppm to acetone, ethyl acetate, cyclohexane, and
isopropyl alcohol, respectively[351]. Figure 17(d) shows the sche-
matic diagram of coupling quantum emitters by use of a hex-
agonal boron nitride (hBN)-integrated MNF[352]. Excited by
532-nm-wavelength pulses or CW lasers, the emitters at a wave-
length of 666 nm from the hBN were coupled into and wave-
guided along the MNF, with a coupling efficiency of 10%. This
MNF-based coupling scheme provides convenience for effi-
ciently exciting and collecting quantum emitters. More recently,
Xiao et al. reported a miniature waveguide photoactuator by em-
bedding an optical MNF in a PDMS/Au nanorod-graphene ox-
ide photothermal film[354]. With a 635-nm-wavelength light
coupled into the optical MNF, the photothermal-effect-induced
temperature rise led to a significant bending of the photoactua-
tor, with large bending angles (>270°), fast response (1.8 s for
180° bending), and low energy consumption (<0.55 mW∕°)[354].
Using the MNF-2D-material-integrated photoactuators, they
demonstrated soft grippers for capturing, moving, and releasing
small objects with different shapes.
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5.1.3 Optical micro-cavities

Optical micro-cavities, taking forms of microscale FP struc-
tures, dielectric spheres, disks, cylinders, rings, and other com-
plicated structures, are basic functional structures of photonic
applications ranging from nonlinear optics, optical sensing,
and microlasers to cavity quantum electrodynamics and opto-
mechanics. Coupling of light into and out of the micro-cavities
is the initial step for their characterization and application.
Historically, optical MNFs (known as fiber tapers) have long
been used for in/out coupling of the micro-cavities, especially
for whispering gallery mode (WGM) cavities (in the form of
microcylinders, microspheres, microdisks, microbottles, or mi-
crobubbles), which have small mode volumes, high Q factors,
and small footprints. Compared with other typical coupling
methods including free-field coupling, prism coupling, pla-
nar-waveguide coupling, and angle-polished-fiber coupling,
the MNF-coupling method has advantages including the highest
coupling efficiency, low insertion loss, small footprint, and fiber
compatibility. For example, in 1997 Knight et al. demonstrated
a phase-matched excitation of WGM resonances in a micro-
sphere[101]. By adjusting the diameter of a silica MNF to match
the propagation constant of the waveguiding modes with that of
the WGMs, they achieved coupling efficiency up to 90%. In
2003, Spillane et al. demonstrated nearly lossless coupling
between silica MNFs and silica microspheres[355] with coupling
efficiency higher than 99.97%, showing a Q factor in excess
of 108. The ultrahigh-Q factor makes microspheres favorable
for a huge range of applications including optical sensing[356],
optomechanics[357], nonlinear optics[358], and microlasers[359].
As a case in point, Fig. 18(a) schematically shows a thulium-
erbium-ytterbium (Tm-Er-Yb) co-doped silica microsphere
cavity coupled with a silica MNF[359]. Pumped by a 975-nm-
wavelength CW light at room temperature, an upconversion
white light (i.e., three primary RGB lights) can be extracted
from the output end of the MNF. In 2005, Dong et al. investi-
gated the coupling between a 2-μm-diameter tapered fiber and a
microcylinder resonator (i.e., SMF-28 fiber after thermal treat-
ment) [see Fig. 18(b)], demonstrating a high Q factor up to
1.4 × 107 of the resonator[360]. In 2016, Lu et al. employed a

tapered-fiber-coupled silicon microdisk (4.68 × 105 in Q factor
at 1534.4-nm wavelength) [see Fig. 18(c)] to generate a single-
photon source from spontaneous FWM in the microdisk[361]. In
2018, Gorajoobi et al. proposed the coupling of a silica MNF
with a Yb3+-doped microbottle resonator [see Fig. 18(d)] to ex-
cite a low-threshold, high-efficiency, tailorable microbottle
laser[362]. Despite the versatility and flexibility of the MNF-
micro-cavity coupling system, the robustness of the system is
relatively low since optical MNFs are susceptible to environ-
mental perturbations (e.g., airflow disturbance and mechanical
vibrations). For practical use, an effective package for the cou-
pling system is highly desirable, such as vacuum treatment and
surface protection. Alternatively, Farnesi et al. proposed a ro-
bust coupling structure based on a thick MNF (15-18 μm in
diameter) with a pair of long-period fiber gratings written in
the standard fiber pigtails, and demonstrated total coupling ef-
ficiency up to 60% with microspheres or microbubbles[363,364].

5.2 MNF-Based Passive Optical Components

Benefitting from their superior mechanical behavior and pliabil-
ity, the freestanding optical MNFs with large available lengths
can be handled for high-precision, flexible micro/nanomanipu-
lation, such as fine tailoring, knotting, splicing, positioning,
transferring, and assembly. To facilitate the manipulation, opti-
cal MNFs are usually placed on a clean surface of a certain sub-
strate (e.g., a silicon, sapphire, MgF2 wafer, or a glass slide).
Electrochemically sharpened tungsten probes with tip sizes of
tens to hundreds of nanometers are usually mounted on high-
precision moving stages to perform the micro/nanomanipulation
under an optical microscopy[34,110,135,243,321]. Some basic manipu-
lations of the optical MNFs have been reported in 2005[321],
showing that an optical MNF can be pushed, cut, bent, twisted,
picked up, transferred, and positioned on a substrate. Indeed,
sharp fiber taper probes with relatively high stiffness can also
be used as an effective micro/nanomanipulation tool, offering
convenience for high-efficiency direct coupling of the input
light from standard fibers to optical MNFs during the manipu-
lation[365]. To bestow the as-fabricated MNFs with more

Fig. 17 Near-field optical coupling with 2D materials using optical MNFs. Schematic diagrams
of silica MNFs coated with (a) thin layer of graphene[345], (b) few-layer GaSe[349], (c) MoS2

nanosheets[351], and (d) hBN flakes[352].
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functionalities, optical MNFs can be assembled into a variety of
geometries, with typical passive components introduced below.

5.2.1 MNF-based resonators

Owing to the efficient evanescent coupling between touched
MNFs, an MNF-assembled resonator can be fabricated by sim-
ply folding or knotting an MNF into a knot, loop, ring, or coil
geometry. Depending on the ring size and geometry, the Q factor
of an MNF resonator typically ranges from 102 to 106.

The MNF loop resonator, usually formed by twisting an
MNF, is the simplest structure among MNF resonators. In
2004, by bending and coiling free silica MNFs into a self-
touching microloop structure, Sumetsky et al. developed a self-
coupling microloop optical interferometer[152]. Shortly after, by
improving the self-coupling condition, the same group success-
fully demonstrated a loop resonator assembled by a 660-nm-
diameter MNF [see Fig. 19(a)], showing a Q factor higher than
1.5 × 104 and a finesse of ∼10 around 1.5-μmwavelength[366]. In
2006, Sumetsky et al. achieved an intrinsic Q factor of 6.3 × 105

by improving the coupling efficiency and reducing the optical
loss of the MNF[367]. To improve the robustness, in 2007 Guo
et al. demonstrated a copper-rod-supported loop resonator by
wrapping a 2.8-μm-diameter MNF around a 460-μm-diameter
copper rod[368]. In addition, an MNF can also be assembled into
a Sagnac loop[369], based on which an all-fiber FP resonator can
be obtained.

In contrast to the self-touching loop structure that is main-
tained by the van der Waals and electrostatic forces, a knot
structure has much higher robustness, especially operating in
liquids[370–374]. In 2006, Jiang et al. assembled a free-standing

MNF into a knot and demonstrated its high stability in a liquid
environment, exhibiting a Q factor as high as 3.1 × 104 and a
finesse of 13 around 1570-nm wavelength[370]. Such an MNF
knot has only one input/output end connected with a standard
fiber, while the other end typically relies on evanescent coupling
to the output/input port. To simplify the input/output coupling,
in 2011 Xiao and Birks developed a “knot-stretch” approach to
assembling MNF knot resonators connected to standard fibers at
both sides[371], which also increased the overall robustness of the
knot structure [see Fig. 19(b)]. Using high-precision translation
stages, they obtained a knot resonator (1 μm in MNF diameter
and 570 μm in knot diameter) with a Q factor of 9.7 × 104 and a
finesse of 73 around 1550-nm wavelength. In 2017, by attaching
an MNF knot (5 μm in MNF diameter and 1 mm in knot diam-
eter) on a 100-nm-thick gold film, Li et al. reported a hybrid
plasmonic MNF knot resonator with a Q factor higher than
5.2 × 104 around 1550-nm wavelength[373]. Later in 2020,
the same group improved the Q factor of this hybrid plasmonic
MNF knot resonator (2.4 μm in MNF diameter and 1.1 mm in
knot diameter) to 7.9 × 104[374].

Furthermore, an MNF can be fabricated into a free-standing
closed-loop ring resonator through fusion splicing, which pos-
sesses a higher mechanical robustness than the above-
mentioned MNF-based resonators. For example, in 2008 Pal
and Knoxa used a CO2 laser beam to splice MNFs, showing
a splicing loss below 0.3%[375]. Shortly after, by fusion-splicing
the coupling region of an MNF loop, they obtained a high-sta-
bility loop resonator with a Q factor of 2.5 × 104 around 1550-
nm wavelength[376]. In 2009, by fusion-splicing two ends of an
MNF (3.8 μm in diameter), Wang et al. successfully obtained a

Fig. 18 Optical MNF as an invaluable tool for evanescent-wave coupling with micro-cavities.
Schematic diagrams of the optical MNF-coupled (a) rare-earth-doped microsphere[359], (b) silica
microcylinder[360], (c) silicon microdisk[361], and (d) rare-earth-doped microbottle resonators[362].
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2.4-mm-diameter closed-loop resonator, with a Q factor of 1.1 ×
105 and a finesse of 15.3 around 1.5-μm wavelength[377].
In 2011, by fusion-splicing a phosphate glass MNF, Li et al.
fabricated a free-standing closed-loop 1.34-mm-diameter
ring resonator [see Fig. 19(c), green part], with typical splice
losses of ∼0.2 dB and a Q factor of 2.5 × 105 around 1.6-μm
wavelength[378].

To obtain a high Q-factor 3D microcavity, in 2004 Sumetsky
theoretically proposed a stacked MNF coil resonator[379].
Different from the WGMs in loop/knot resonators, the light con-
finement in such an MNF coil resonator is achieved by self-
coupling between turns rather than by the presence of a closed
optical path. In 2007, by wrapping a 1.7-μm-diameter MNF
around a 1-mm-diameter rod, Sumetsky et al. experimentally
demonstrated a two-turn MNF coil resonator, showing a Q fac-
tor as high as 6.1 × 104 around 1530-nm wavelength[380]. In the
same year, Xu and Brambilla fabricated an MNF coil resonator
by wrapping a 1.5-μm-diameter MNF around a 560-μm-
diameter rod in two to four turns, with a Q factor of about
1 × 104 around 1530-nm wavelength[381]. To optimize the reso-
nators with higher Q factors, several options of geometry modi-
fication have been investigated[382,383]. For example, in 2010
Jung et al. reported a uniform cylindrical MNF coil resonator
with an improved Q factor of 2.2 × 105 around 1550-nm
wavelength[384].

So far, benefitting from their advantages of high Q-factors,
tunable resonance, high robustness, and fiber compatibility,
MNF-assembled resonators have been explored for applications
from optical sensors[385–389], filters[390], and lasers[391–393] to nonlin-
ear optics[72] and atom optics[394].

5.2.2 MNF-based MZIs

A Mach-Zehnder interferometer (MZI), which typically has an
isolated reference arm and a sensing arm, is one of the most
common structures used in optical sensors, modulators, and fil-
ters. Benefitting from their high-efficiency near-field coupling,

MNFs can be assembled into MZIs with small footprints and
high flexibility. In 2008, Li and Tong experimentally assembled
silica and tellurite glass MNFs into highly compact MZIs
[see Fig. 19(d)], with footprints of tens to hundreds of microm-
eters and extinction ratios of ∼10 dB[395]. In 2012, Wo et al.
demonstrated a simple and robust MNF-based-MZI structure as-
sembled by a 2-μm-diameter silica MNF for sensing applica-
tions[396]. To enhance mechanical stability, MNF-based MZIs
can also be embedded into low-index polymer, with a slight
degradation in extinction ratio[251]. It is worth mentioning that
MNF-based MZIs can also be assembled by the MNFs made
of different materials[397]. For example, in 2013, by coupling
a Ag nanowire with a silica MNF, Li et al. reported a hybrid
photon-plasmon MNF-based MZI, exhibiting a Q factor of
6 × 106 and an extinction ratio up to 30 dB around 1550-nm
wavelength[325].

5.2.3 MNF Bragg gratings

Similar to the Bragg gratings inscribed on standard fiber, they
can also be fabricated on an MNF, making it an MNF Bragg
grating (MNFBG) with a much smaller size. So far,
MNFBGs have been fabricated by femtosecond laser pulse/
CW irradiation[398,399], focused ion beam (FIB) milling[400–402],
etching commercial FBG[403,404] or UV irradiated FBG[403,405].
For example, in 2005 Liang et al. reported a chemically etch-
eroded MNFBG with a diameter of 6 μm and demonstrated its
application in sensing refractive indices of different liquids[403].
In 2011, Liu et al. obtained a 518-μm-long and 1.8-μm-diameter
MNFBG by the FIB milling [see Fig. 19(e)][401], with a reflection
peak/transmission dip located at 1538-nm wavelength. When
being used for optical sensing, such an MNFBG exhibited a sen-
sitivity as high as 660 nm per refractive index unit.

Meanwhile, many other types of gratings, including long-
period gratings[179,406,407], Type IIa Bragg gratings[408], chirped
Bragg gratings[409], and MNFBGs arrays[404], have also been
demonstrated and applied to high-sensitivity optical sensing.

Fig. 19 MNF-based photonic components. Optical microscopic images of MNF-based passive
optical components including (a) loop[366], (b) knot[54], and (c) ring[378] resonators. (d) Optical micro-
scopic image of an MZI assembled with two 1-μm-diameter silica MNFs[395]. (e) SEM image of a
Bragg grating inscribed on a 1.8-μm-diameter silica MNF[401]. (f) SEM image of a plasmonic-
photonic cavity with several Au nanorods deposited on a 2.2-μm-diameter silica MNF[413].
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Additionally, it is worth noting that, benefitting from the effi-
cient near-field coupling, microscale gratings can also be
formed by simply attaching and coupling an MNF to an external
grating structure[410], which offers additional flexibility to MNF-
based gratings.

5.2.4 MNF-based plasmonic-photonic cavity

By strongly coupling plasmonic modes of metal nanostructures
(e.g., metal NPs[411,412]) with WGMs of an optical MNF, a new
type of hybrid plasmonic-photonic resonator can be realized.
For example, in 2015 Wang et al. constructed a plasmonic-pho-
tonic cavity by depositing single Au nanorods on the surface of
a silica MNF [see Fig. 19(f)][413]. Owing to the strong coupling
between the LSPR modes of the Au nanorod and the WGMs of
an MNF, a significant reduction in the LSPR spectral width
(from 50 to 2 nm) of the Au nanorod was observed. Such a
strong-coupled hybrid plasmonic-photonic resonating scheme
has opened a variety of opportunities from improving spatial
resolution or sensitivity in optical sensing[414,415] and miniaturiz-
ing strong-coupling systems[416] to enabling single-nanorod-
based photon-plasmon lasing[417] and enhancing nonlinear
optical effects[418–420].

5.3 Optical Sensors

Owing to their favorable waveguiding properties, especially
tightly confined high-fraction evanescent fields, optical MNF
is one of the most promising choices for optical sensing on
the micro/nanoscale. Typically, the changes of surrounding me-
dia or samples will change the waveguided light in an MNF via
scattering, absorption, dispersion, emission, or other processes,
and change the transmitted light in intensity, phase, polarization,
or spectral features, which can be used for retrieving the infor-
mation of the measurands. Compared with other fiber-optic
sensing approaches[421–425], MNF-based sensors have the advan-
tages of high sensitivity, small footprints, and fast responses. So
far, various MNF-based structures, including straight MNF,
MNF-assembled structures, surface functionalized MNF struc-
tures, and polymer-embedded MNF structures, have been em-
ployed for optical sensing. Over the past few decades, there have
been numerous review articles focusing on MNF-based optical
sensors or similar devices[64–66,387,426–437]. In this section, we will
briefly summarize typical MNF-based sensors and provide an
update on the recent advances in this field, categorized with dif-
ferent structures.

5.3.1 As-fabricated straight MNFs

As-fabricated MNFs, usually biconically connected to standard
optical fibers, are the simplest optical sensing structures based
on surface absorption or scattering. For instance, in 2007
Warken et al. proposed a molecule sensing scheme based on
the absorption spectrum of the waveguided light in a 500-
nm-diameter silica MNF, and demonstrated the detection of
sub-monolayers of 3,4,9,10-perylene-tetracarboxylic dianhy-
dride (PTCDA) molecules[438]. Later in 2014, Yu et al. achieved
the single-NP detection and sizing in an aqueous environment
using a pair of 500-nm-diameter MNFs[439]. As shown in
Fig. 20(a), when an NP is attached to the MNF surface, a down-
ward step in the transmission occurres [see Fig. 20(a), lower
panel]. Such a sensing structure can also be extended to
MNF arrays, enabling faster and more efficient detection[440].

For biochemical sensing, the MNFs are usually immersed in
a liquid, in which the effective refractive index of the MNFs
should be larger than the refractive index of the liquid. In
2011, by integrating a 900-nm-diameter silica MNF into the mi-
crofluidic chip, Zhang et al. demonstrated efficient sensing of
bovine serum albumin using a 633-nm-wavelength probe
light[244], with a detection limit of 10 fg/mL and a probe light
power down to 150 nW. Meanwhile, the selective detection
of target analytes in biochemical samples can be achieved by
immobilizing specific signal-responsive receptors[441–443].

The intermodal interference in a multimode MNF has also
been explored for optical sensing[444,445]. Commonly, a large pro-
portion of the light energy from the fundamental mode of the
untapered region will couple into the HE11 and HE12 modes
in the tapered region, resulting in inter-mode interference.
The feature of such interference is highly sensitive to the change
of the surrounding environment, and is well-suited for sensing
applications. In 2006, Kieu et al. reported a displacement sensor
assembled by an 8-μm-diameter MNF, showing an accuracy of
100 nm[444]. A refractive-index sensor capable of measuring Δn
(∼1.42 × 10−5) and a temperature monitor with sensitivity ΔT
(∼1°C) were also demonstrated. Recently, a number of MNF
sensors based on multimode interference have been reported
for measuring the refractive index[445–448], temperature[449],
strain[449,450], and magnetic fields[451].

Compared to glass MNFs, polymer MNFs have special ad-
vantages for optical sensing, including low cost, great flexibility,
infrared (long-wavelength) transparency, excellent biocompati-
bility, permselective feature to gas molecules, and hospitality for
a variety of dopants. For instance, in 2008, relying on the spec-
tral response of a NO2 concentration-dependent oxidation
degree of polyaniline (PANI) mixed in a 250-nm-diameter
PS MNF, Gu et al. developed a NO2 sensor with a low detec-
tion limit (<0.1 ppm) and a response time of ∼7 s [see
Fig. 20(b)][112]. In 2010, on the basis of the surface passivation
of QD emission in a 480-nm-diameter CdSe/ZnS QD-doped PS
MNF, Meng et al. realized a miniaturized optical humidity sen-
sor with a response as fast as 90 ms and an ultra-low optical
power of about 100 pW[111]. Most recently, in 2023 Yang et al.
reported eco-friendly polymer MNFs from natural lotus silks,
and found their applications in sensing pH value and bacterial
activity[116].

5.3.2 MNF-assembled structures

In principle, most of the MNF-assembled passive optical struc-
tures mentioned in Sections 5.1 and 5.2 can be employed for
optical sensing, as introduced below.

For anMNF-based coupling structure, the coupling efficiency
is highly dependent on the refractive indices of the MNF and the
surrounding medium, as well as the coupling length, which is
available for optical sensing. For example, in 2015 Luo et al. pro-
posed a compact magnetic-field sensor using an MNF coupler
enclosed in a magnetic fluid[452]. The magnetic-field-induced
change in the refractive index of the magnetic fluid changed
the coupling efficiency of the MNF coupler, resulting in a maxi-
mum sensitivity of 191.8 pm/Oe in wavelength shift. In 2016,
based on two 1.4-μm-diameter coupledMNFs, Li et al. achieved
a refractive index sensor working near the turning point of the
effective group index difference between the even supermode
and odd supermode, and obtained a sensitivity as high as
39541.7 nm/RIU with an ambient refractive index of 1.3334[453].
In addition, the loss of the MNF coupler-based sensor can be
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Fig. 20 Typical MNF-based photonic sensors. (a) Schematic illustration of a single NP detection
system, where a pair of identical MNFs is used (upper panel)[439]. A diode laser with a wavelength
of 680 nm is employed as the probe light. The transmitted light is finally detected by a 125-MHz
photodetector and monitored by an oscilloscope. Typical optical transmission of an MNF during a
time interval of 10 s when the PS NPs are binding to the surface of the MNF one-by-one (lower
panel). Each data point is the average of 250 values of measured transmitted power during 20 ms,
and the red curve is for guiding the eyes. (b) Schematic illustration of a microchannel-supported
polymer-MNF-based gas sensor[112]. A laser with a wavelength of 532 nm is coupled into a 250-nm-
diameter PANI/PS MNF with fiber tapers. The time-dependent absorbance of the sensor to cyclic
NO2∕nitrogen exposure with NO2 concentration from 0.1 to 4 ppm is shown in the lower panel.
Inset: dependence of the absorbance over the NO2 concentration ranging from 0.1 to 4 ppm.
(c) Schematic illustration of a gelatin layer coated silica MNF for relative humidity sensing[499].
The transmitted light intensity of the sensor at 1550 nm wavelength in the range of 9%–94% rel-
ative humidity, and the typical time-dependent transmittance of the sensor when relative humidity
jumps from 75% to 88% are shown in the lower panel. (d) Plasmonic-nanostructure-activated MNF

Zhang et al.: Optical microfiber or nanofiber: a miniature fiber-optic platform for nanophotonics

Photonics Insights R02-28 2024 • Vol. 3(1)



reduced by introducing a Sagnac loop, which is constructed by
connecting two standard optical fibers on one side of the coupler
and acts as a reflector[454,455].

The MNF-based MZI with phase-sensitive detection is an-
other widely used highly sensitive structure. In 2005, Lou et al.
theoretically predicted that an MZI assembled with two MNFs
could offer a sensitivity one order of magnitude higher than
those of conventional waveguide MZIs[456], owing to the acces-
sible high-fraction evanescent waves in the MNFs. To date, a
number of MNF-based MZIs have been utilized for phase-
sensitive optical sensing. For example, in 2012, based on an
MZI comprised of two 2-μm-diameter silica MNFs, Jasim et al.
detected the current flowing in a copper wire with a sensitivity
of 60.17 pm=A2[457]. In 2015, Luo et al. achieved an ultrahigh
refractive index sensitivity of 10777.8 nm/RIU near the
dispersion turning point of a multimode MNF-based MZI[458].

Since the resonance spectrum of an MNF resonator is highly
sensitive to the change of resonating structure or environmental
conditions (e.g., refractive index, temperature, and strain), the
MNF resonators have also been widely studied for optical sens-
ing. In 2006, relying on a high-Q-factor MNF loop resonator
(with an intrinsic Q factor of 6.3 × 105), Sumetsky et al. realized
the temperature detection with a resolution of 0.1 mK and a
response time on the order of microseconds[367]. Compared with
the loop structure, an MNF knot possesses higher robustness. In
2010, Wu et al. reported an accelerometer based on a 386-μm-
diameter knot resonator assembled with a 1.1-μm-diameter
MNF in a micro-electromechanical system (MEMS), exhibiting
a sensitivity of 624.7 mV/g and a dynamic range of �20 g[459].
Meanwhile, the stacked 3D MNF coil resonator has also been
explored for measuring the refractive index[389], current[460–462],
acoustics[463], and absorption[464,465]. For example, in 2010
benefitting from the Faraday rotation, Belal et al. presented a
25-turn MNF-coil current sensor with a responsivity of
16.8� 0.1 μrad∕A, which could also be used to sense high-
frequency currents or magnetic fields (e.g., 2 GHz in
principle)[460].

Up to now, a variety of MNF-assembled sensing structures
have been reported for sensing force[454,466], strain[467–470], temper-
ature[471–477], humidity[385–387,478], refractive index[458,479–483], electric
current[484], magnetic field[485,486], biochemical compositions[487],
and gases[325]. More details can be found elsewhere[426,430,431,434,437].

5.3.3 Surface functionalized MNF structures

Owing to its strong surface waves (i.e., waveguided evanescent
fields), an MNF can be readily functionalized by modifying ei-
ther the surface structure or the dielectric environment near the
surface. Here, we introduce three typical types of surface-func-
tionalized MNF sensors: MNFBG sensors, functionalized-
coating MNF sensors, and plasmonic-nanostructure-activated
sensors.

As mentioned in Section 5.2.3, an MNFBG can significantly
enhance the sample-light interaction using abundant evanescent

fields, and has been investigated for sensing the refractive
index[398,401,488,489], temperature[400,490], strain/force[490,491], gas[492],
biochemical compositions[493–495], and acoustic waves[496]. For ex-
ample, in 2010 Fang et al. demonstrated a refractive sensor
based on a 2-μm-diameter MNFBG[398]. Typically, an
MNFBG with a thinner diameter and higher-order mode reso-
nance exhibited larger refractive sensitivity, and a maximum
sensitivity of 231.4 nm/RIU at a refractive index of 1.44 was
achieved. In 2022, by integrating an 800-nm-diameter ZnO
MNFBG on the tip of an optical fiber taper, Li et al. demon-
strated a compact label-free nanosensor for real-time in-situ
early monitoring of cellular apoptosis in individual living
cells[495]. In 2023, Song et al. developed a near-infrared
MNFBG operated at 785-nm wavelength[497], and employed it to
monitor the axial tension and the bending with a responsivity
of 211 nm/N and 0.18 nm/deg, respectively. Additionally,
other designs of MNF-based gratings such as long-period gra-
tings[179,406,407], chirped Bragg gratings[409], and MNFBGs
arrays[404] can also be employed for high-sensitivity optical
sensing of measurands from the refractive index and force to
acoustic waves.

Similar to inscribing gratings on the MNF surface, coating
the MNF surface is another efficient approach to functionalizing
an MNF for optical sensing with high compactness and sensi-
tivity, and can have a simpler fabrication process and higher
selectivity. In 2005, Villatoro et al. developed a hydrogen
sensor by coating a 4-nm-thick palladium film on the surface
of a 1.3-μm-diameter MNF[498]. According to the hydrogen-
concentration-dependent attenuation at 1550-nm wavelength,
they obtained a detection limit down to 0.05% and a response
time of about 10 s. In 2008, relying on a gelatin-coated (80 nm
in thickness) 680-nm-diameter MNF, Zhang et al. developed a
humidity sensor with a fast response (70 ms) within a wide hu-
midity range (9%–94% relative humidity) [see Fig. 20(c)][499].
Additionally, the usage of graphene atomic/graphene oxide
layers for the detection of adsorbed gas molecules has been
attracting much attention due to its high sensitivity and low de-
tection limit[492,500–505]. In 2021, Huang et al. demonstrated a
multilayer-nanoparticle-modified graphene oxide-coated MNF
for sensing ethanol with a low detection limit (5.25 ppm)
and a fast response (118 ms)[506]. In addition, many other func-
tional films, such as black phosphorus[507], WS2 layer[508], and
ternary cross-linked film (PVA-APTES-ICA)[509], have been
coated on MNFs for optical sensing.

Besides the above-mentioned surface functionalization, plas-
monic nanostructures have also been deposited or integrated on
the surface of an MNF, such as nanorods[414], NPs[411,412], and
nanohybrids[510], for locally enhancing the MNF-based light-
matter interaction, which offers an opportunity for hybrid
photon-plasmon sensing with enhanced performances. For ex-
ample, in 2015 Gu et al. integrated Pd NPs on an MNF surface
and generated strong coupling between LSPRs and the
MNF whispering-gallery modes (WGMs)[415]. Based on the

biosensor[510]. Images in the lower panel demonstrate that the sensor can not only detect cancer
cells, but also treat cells through cellular photothermal therapy. (e) Schematic illustration of a skin-
like wearable MNF-based sensor[247], constituting of an 80-μm-thickness PDMS film, a 980-nm-
diameter MNF, and a glass slide. The response to the pressure of 2.1, 1.3, 0.2, and 0.1 Pa,
and the temporary response to forced oscillation frequencies of 1, 4, and 20 kHz are shown
in the lower panel. (f) Optical detection of cardiovascular vital signs (upper panel) based on
the PDMS-packaged-MNF pulse-wave signal sensing principle shown in the lower panel[517].
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ultranarrow resonances (a measured FWHM of 3.2 nm at 622.7-
nm resonant wavelength), the Pd-nanoantenna-MNF cavity sys-
tem can detect hydrogen gas with an enhanced sensitivity of
about 5.11 nm/%VOL. Later in 2019, Zhou et al. demonstrated
a gold-nanorod-MNF coupled system for relative humidity
sensing, and achieved a spatial resolution of 1.5 mm[414].
Meanwhile, such photon-plasmon coupled MNF systems have
also served as an effective platform for biosensing[441,511,512]. For
example, in 2019 Li et al. functionalized the surface of a 7.1-
μm-diameter MNF with a plasmonic nanointerface consisting of
black-phosphorus-supported gold nanohybrids[510]. As shown in
Fig. 20(d), this MNF-based sensor was not only able to detect an
epidermal growth factor receptor (ErbB2) at concentrations
from 10 zM to 100 nM at the single-molecule level (detection
limit ∼6.72 zM), but also able to treat cancer cells through cel-
lular photothermal therapy. Two optical images in Fig. 20(d)
illustrate the comparison before and after cellular photothermal
therapy, clearly showing the removal of the cancer cell.

5.3.4 Polymer-embedded MNF structures

To isolate the MNF from surface contamination, enhance the
mechanical stability, or make the MNF sensor wearable,
MNF sensing structures can be embedded in polymer substrates
or thin films. Typically, in such structures, the change of the
refractive index or geometry of the polymer film will lead to
the change of the optical transmittance of the MNF embedded
inside, making it suitable for sensing a variety of measurands
including tension, pressure, bending, strain, temperature, and
humidity, which is highly desired in applications including
health monitoring[246,513,514], human-machine interaction[515,516],
and intelligent robots. For instance, in 2018, by embedding a
hybrid plasmonic MNF knot resonator into a PDMS film, Li
et al. developed a pressure sensor with a sensitivity of
0.83 kPa−1 and a detection limit of 30 Pa, for sensing of wrist
pulse, respiration, and finger pulse[470]. In 2020, based on an
MNF-embedded PDMS patch, Zhang et al. obtained a skin-like
wearable optical sensor with a pressure detection limit of 7 mPa
and a response time of 10 μs [see Fig. 20(e)][247]. In 2022, Li
et al. realized a wearable MNF-based sensor chip for precise
vital signs monitoring and cardiovascular health assessment[517].
Figure 20(f) shows the physical image of the sensor chip (upper
panel) and the schematic diagram of pulse wave signal sensing
(lower panel).

Moreover, discrete single sensors can be integrated to imple-
ment complex functions. For instance, in 2020 Zhang et al.
demonstrated a five-sensor-integrated optical data glove for
monitoring the flexion and extension of the joints of fingers
[247]. In 2022, Ma et al. used an MNF array (five parallel
MNFs) to fabricate an optically driven wearable human-interac-
tive textile with a high sensitivity (65.5 kPa−1) and a fast re-
sponse (25 ms) for touch sensing, and demonstrated a
remote-control robotic hand and a smart interactive doll based
on such optical smart textiles[515]. More recently, relying on soft
PDMS-embedded MNFBGs attached to different body loca-
tions (e.g., chest, wrist, and neck), Zhu et al. reported a spatio-
temporal hemodynamic measurement technique to monitor
hemodynamic parameters (e.g., systemic pulse transit time,
heart rate, blood pressure, and peripheral resistance), with high
sensitivity, electromagnetic immunity, and temporal synchroni-
zation between multiple remote sensor nodes[514].

In addition, by flexible geometry design of the PDMS
cladding and the embedded MNF structure, these kinds of

sensors have also shown great versatility for sensing of hard-
ness[518], flow rate[519,520], strain[246,466,521], slip[522], and acous-
tics[523].

5.3.5 More possibilities

Besides the aforementioned MNF-based optical sensors, there
are also many other sensing structures, such as in-line MNF-
MZI[474], cascaded MNF knot resonators[524,525], and MNF-
WGM coupling structure[526,527], which have been demonstrated
for physical, chemical, and biological applications. Due to the
limited space, we will not go into detail here.

Essentially, as a miniature fiber-optic sensor, the MNF sensor
is outstanding for high-sensitivity, fast-response, electromag-
netic-immunity, and high-flexibility optical sensing on the
micro/nanoscale. From our point of view, the current trend of
MNF sensing is pushing the detection limit, achieving multi-
parameter sensing, and developing intelligent wearable devices,
as well as targeting future biomedical sensing applications.
Rapid progress on MNFs with new functional structures and
materials, as well as new mechanisms or effects for optical sens-
ing, will continue to bestow MNF-based optical sensors with
new opportunities.

5.4 Optomechanics

5.4.1 Optomechanics in a single MNF

It is well known that optomechanical force arises from a pho-
tonic momentum exchange between light and matter. When act-
ing on optical MNFs, a fast, evident optomechanical response
can be observed due to their small mass/weight (for a 200-nm-
diameter 10-μm-long silica MNF, on the order of 10−15 kg) and
low stiffness (5.44 fN/nm). In 2008, She et al. investigated the
optomechanical behavior of silica MNFs triggered by a 650-nm-
wavelength long pulse (1/5 s in pulse interval)[89]. When the light
traveled from the free end of a 450-nm-diameter MNF to the air,
an inward push force on the free endface was observed, support-
ing Abraham’s momentum of light in a transparent dielectric.
Also, the MNF responded to the pulse on and off instantly
by observable deformation. Based on this optomechanical ef-
fect, an MNF-based all-optical switch was demonstrated, pos-
sessing a turnoff time of ∼500 ms and recovery time of
∼760 ms[94]. In 2015, Luo et al. presented a detailed theoretical
model of the optomechanical effect in a silica MNF Bragg gra-
ting[528]. The light-induced strain along the grating introduced an
optically reconfigurable chirp in the grating period and optical
delay at a shorter wavelength, which is promising for all-optical
switching and tunable optical delay lines. In 2019, Zheng et al.
further investigated the optomechanical motion of a suspended
silica MNF on the top of a glass substrate[90]. When a 1458-nm-
wavelength pump light was waveguided in the MNF, a portion
of light was evanescently coupled into the substrate, which in-
duced a momentum transfer from the MNF to the substrate. The
momentum change introduced a repulsive optical force on the
MNF, which pushed the MNF away from the substrate. Assisted
with a white-light-interference measurement method (0.356 nm
in resolution), they obtained an optomechanical efficiency of
the MNF-based nano-optomechanical system as 20.5 nm/μW.
Subsequently, based on the nano-optomechanical system, a
broadband (up to 208 nm) and low-power (down to 624.13 μW)
light-control-light technique was achieved, as schematically
illustrated in Fig. 21(a)[91]. With a high-power pump light
launched into the MNF, the repulsive force exerted on the MNF
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caused a micro-bend (i.e., a gap between the MNF and the sub-
strate), which reduced the coupling loss between the MNF and
the substrate. At this time, the signal light could propagate
through the MNF with a lower optical loss. By utilizing this
scheme, the minimum optomechanical force exerted on the
MNF was measured to be 380.8 fN.

5.4.2 MNF-based optomechanical trapping and propelling of
particles

When acting on the surrounding media (e.g., micro/nanopar-
ticles), the evanescent field around subwavelength-diameter
MNFs can trap micro/nanoparticles by an optical gradient force,
and propel them along the length of the MNF by a scattering
force. Compared with other optomechanical manipulation tools

like free-space optical tweezers and on-chip waveguide tweez-
ers, the freestanding MNF-based optomechanical system exhib-
its advantages of high efficiency, high precision, low loss, long
propelling length, high flexibility, and fiber compatibility. To
quantificationally describe the optomechanical forces exerted
on the micro/nanoparticles around the MNFs, several theoretical
models have been proposed[529,530]. The most frequently used
model is to integrate the time-independent Maxwell stress tensor
hTi over a closed surface S surrounding the particles, as given
by[530,531]

F �
Z
S
hTi · nSdS; (24)

Fig. 21 Optical MNF optomechanical systems. (a) Schematic illustration of the light-control-light
process in an MNF nano-optomechanical system[91]. The evanescent-field coupling of the pump
light (at a wavelength of λp) to the substrate generates a repulsive optical force to push the MNF far
away from the substrate, allowing the signal light (at a wavelength of λs) to pass through with less
loss. (b) Time-sequential optical microscope images of 3-μm-diameter PS particles propelled
along a 950-nm-diameter MNF in the deionized water at 1-s intervals[532]. The wavelength of
the input light from the left side is 1047 nm. (c) Schematic illustration and time-lapse-compilation
images of light-induced rotation of 3-μm-diameter PS particles around a 700-nm-diameter MNF in
the deionizedwater[540]. The counter-propagating lights from both sides come from the same source
at 1064-nm wavelength, with a helicity parameter σ � �1. (d) Sequencing optical microscope im-
ages showing optical propelling of an oil droplet (11 μm × 10 μmellipsoid) along a silica MNF (1 μm
in diameter) at an interval of 1.2 s[54]. The input CW light (0.7W in power) is coupled andwaveguided
along theMNF from left to right. (e) Schematic of pullingahexagonal gold plate (5.4 μm inside length
and 30 nm in thickness) up on a tapering-profile silica MNF (6° in cone angle) near the tapered
end[541]. The photophoretic pulling force originates from the light-induced thermal effect.
(f) Schematic of optical selection and sorting of single nanodiamonds along an optical MNF in pure
water[546].When two different-wavelength lasers counter-propagate along theMNF, a nanodiamond
can be trapped by the gradient force and transported by the absorption and scattering forces. The
scattering forces can be cancelled out by choosing applicable laser power and in this case, the
movement of the nanodiamond depends on the absorption cross section.

Zhang et al.: Optical microfiber or nanofiber: a miniature fiber-optic platform for nanophotonics

Photonics Insights R02-31 2024 • Vol. 3(1)



where ns is a normal vector pointing to the outward direction
from the surface S, and the elements of the Maxwell stress ten-
sor Ti;j can be expressed as

Ti;j � ε0εrEiEj � μ0μrHiHj − 1

2
δi;j�ε0εrjEj2 � μ0μrjHj2�;

(25)

where subscripts i and j are the indices running from x, y to z in
Cartesian space, ε0 and μ0 are the vacuum permittivity and per-
meability, εr and μr are the relative permittivity and relative per-
meability of the medium, E and H are the electric-field and
magnetic-field vectors, Ei and Ej are the i-th and j-th compo-
nents of the E vector, while Hi and Hj are the i-th and j-th com-
ponents of the H vector, respectively, and δi;j is Kronecker’s
delta.

Early experimental work on the optomechanical manipula-
tion of microparticles using silica MNFs was carried out by
Brambilla et al. in 2007[532]. Figure 21(b) shows consecutive im-
ages of propelling 3-μm-diameter PS particles along a 950-nm-
diameter MNF in deionized water, which were captured by the
CCD camera at 1-s intervals. For a 1047-nm-wavelength, 400-
mW input light, the velocities of particles A and B were mea-
sured as 9.0 and 7.0 μm/s, respectively. In 2012, Xu et al.
demonstrated size-dependent optical trapping and propelling
of submicrometer-diameter PS particles in water by launching
a 532-nm-wavelength light into a 600-nm-diameter silica
MNF[533]. At the same input power, the particles with a larger
diameter were more easily trapped and delivered. For example,
at an input power of 10 mW, the measured average delivery
velocity of 400-nm-diameter particles was 24 μm/s, while that
of 700-nm-diameter particles was 63 μm/s. In the same year, Lei
et al. realized bidirectional optical transportation of 713-nm-
diameter PS particles by coupling 980-nm-wavelength light into
the two ends of a silica MNF (with different powers)[534]. When
the power of two counter-propagating lasers was adjusted to the
same, the transported particles halted on the MNF surface.
Furthermore, by employing two beams of counter-propagating
light with different wavelengths (e.g., 808 and 1310 nm), Zhang
and Li achieved continuous particle sorting in a subwavelength-
diameter MNF[535]. In this regime, the PS particles in the two
sizes (i.e., 600 nm and 1 μm in diameter, respectively) could
be transported in opposite directions along an 800-nm-diameter
MNF. For biological applications, in 2013 Xin et al. demon-
strated stable optical trapping and transport of the Escherichia
coli bacteria using a silica MNF placed in a microfluidic
channel[536].

Note that the above optomechanical manipulation is based on
the fundamental mode in a silica MNF. Considering the larger
extension of evanescent fields in high-order modes, Maimaiti
et al. realized optically propelling particles by exploiting the
evanescent fields of high-order modes in an MNF. Compared
with the case of fundamental-mode propelling, the evanescent
field in high-order modes provided a larger optomechanical
force, allowing for a higher transportation velocity of the micro-
particles[537,538]. For reference, at the same power of 25 mW, the
velocity of a 3-μm-diameter particle driven by a quasi-LP11
mode (i.e., 72.5 μm/s) was eight times faster than that driven
by a quasi-LP01 mode (i.e., 8.5 μm/s)[537].

Besides the linear propelling trace, the microparticle can also
be optomechanically rotated around theMNF. In 2019, following
the early theoretical work of Le Kien and Rauschenbeutel[539],

Tkachenko et al. experimentally demonstrated optically rotating
a 3-μm-diameter PS particle around a 660-nm-diameter silica
MNF when waveguiding elliptically polarized fundamental
modes [see Fig. 21(c)][540]. The orbit behavior can be attributed
to the azimuthal optical force, and the orbit frequency of the par-
ticle is proportional to the helicity parameter σ of thewaveguided
light. This finding provides a new degree of freedom for optome-
chanical manipulation.

It is worth pointing out that the above-mentioned cases of
optomechanical manipulation of micro/nanoparticles are carried
out in a liquid environment to alleviate inevitable factors such as
surface adhesion force and gravity. As has been mentioned in
Section 3.3.5, with much higher waveguided power and thereby
much larger optomechanical force in a silica MNF, higher-speed
optical propelling of microparticles can be achieved in air or
vacuum. For example, Fig. 21(d) shows time-sequential optical
microscope images of optically propelling a silicone oil droplet
along a 1-μm-diameter silica MNF in the air[54]. Driven by a 0.7-
W-power 1.55-μm-wavelength CW light, the droplet moved
along the MNF with a velocity of 158 μm/s. When the wave-
guided power of the MNF was increased to 2.2 W, the droplet
velocity could be increased to 2.1 mm/s.

5.4.3 Photophoretic force

Besides the optical gradient/scattering force, the photophoretic
force (originated from the optical field-induced thermal
effect) also provides an alternative approach to manipulating
light-absorbing objects in air (usually shown as a pulling effect),
which has intrigued great research interest in recent years[541–545].
In 2017, by tailoring the optical scattering force and photopho-
retic force, Lu et al. realized the optical pulling and pushing of a
hexagonal gold plate up on a tapering-profile silica MNF in the
air[541]. As shown in Fig. 21(e), the micrometer-sized gold plate
could be pulled against the direction of light propagation from
the taper end where the photophoretic force dominated. Then
the gold plate was pushed back by an optical-scattering-domi-
nated force after it was pulled to the middle section of the taper.
Later, more optomechanical systems for gold-plate manipula-
tion have been demonstrated[542–544]. In addition, relying on
the synergistic working of heat-induced expansion, friction,
and contraction, Linghu et al. demonstrated a continuous and
controllable wriggle of single gold nanowires along silica MNFs
in air, showing advantages of sub-nanometer positioning accu-
racy, low actuation power, and self-parallel parking[545]. For a
single light-absorbing NP (e.g., nanodiamond), the photopho-
retic force can be used to balance the optical scattering force,
facilitating optical selection and sorting of individual NPs [see
Fig. 21(f)]. A concrete scheme was demonstrated by Fujiwara
et al. in 2021[546], which is also applicable to the high-precision
optical sorting of nanocrystals, quantum dots, and molecular
NPs based on their resonant absorption properties.

5.5 Fiber Lasers

Miniaturization of fiber lasers is always of significant interest
for smaller footprint and shorter-cavity applications. As men-
tioned previously, owing to the tightly confined waveguiding
mode and small allowable bending radius, an MNF can be as-
sembled into a micro-ring resonator with an overall size of less
than 1 mm, offering an opportunity to develop a micro-ring laser
with a sub-mm size. Moreover, the large diameter-dependent
waveguide dispersion and very low insertion loss with standard
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Fig. 22 Optical MNF-based fiber lasers. (a) Single-longitudinal-mode laser emission in an
Er3�∕Yb3�-doped phosphate glass MNF knot[391]. Inset: optical microscope image of the MNF
knot. Clear green upconverted photoluminescence is excited by a 975-nm-wavelength light.
(b) Output spectrum of the hybrid photon-plasmon lasing emission in a Au-nanorod-coupled
dye-doped polymer MNF structure[417]. The insets show the optical microscope image (left) and
SEM image (right) of the lasing structure (2 μm in MNF diameter). (c) Schematic of a mode-locked
Yb3�-doped ultrafast fiber laser integrated with silica MNFs inside and outside the laser cavity
(upper panel)[83]. WDM, wavelength division multiplex; ISO, isolator; PBS, polarization beam split-
ter; λ∕4 (λ∕2), quarter-(half)-wave plate. The middle panel shows the output spectra of fiber lasers
with (red solid line) and without (blue solid line) the dechirping MNF outside the cavity. For refer-
ence, the output spectrum of the fiber laser without the intracavity MNF is shown in the black
dashed line. The bottom panel shows interferometric autocorrelation signals of fiber lasers with
(red) and without (blue) the dechirping optical MNF. (d) Schematic of a high-repetition-rate ultrafast
mode-locked laser based on a hybrid plasmonic MNF resonator (upper panel)[374]. Insets: optical
microscope image of the employed MNF knot resonator and SEM image of the MNF. The output
spectrum of the fiber laser in the middle panel manifests that the generated pulses have a high
repetition rate of 144.3 GHz around 1550-nm wavelength. The bottom panel shows the corre-
sponding autocorrelation trace.
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fibers make the MNF ideal for low-loss short-length dispersion
management in mode-locked fiber lasers. This section will focus
on these two types of MNF-assisted lasers.

5.5.1 MNF micro-ring lasers

As has been mentioned in Section 2.2, an active MNF can be
directly drawn from a bulk glass doped with rare earth ions. By
assembling such an MNF into an active cavity (e.g., knot, ring,
or loop), a highly compact MNF laser can be realized. In 2006,
based on theoretical calculations, Li et al. proposed a compact
laser configuration relying on the resonance of the pump and
signal light in a rare-earth-doped MNF ring resonator, and an-
ticipated that the size of an Yb3�-doped MNF ring laser could
go down to 50 μm[547]. Shortly after, Jiang et al. experimentally
demonstrated a 1.5-μm-wavelength micro-ring laser using
an Er3�∕Yb3�-doped phosphate-glass MNF knot [see
Fig. 22(a)][391], with a ring size of 2 mm, a lasing threshold of
∼5 mW, and output power higher than 8 μW. In 2007, by
immersing an MNF knot into a rhodamine 6G dye solution,
Jiang et al. demonstrated an MNF knot laser with a size of
350 μm[392]. In 2012, by assembling an MNF drawn from an
Er3�∕Yb3� co-doped phosphate glass fiber into a double-knot
resonator, Fan et al. successfully realized a single-frequency
MNF laser around 1536-nm wavelength, with a linewidth as nar-
row as 2 kHz[417]. Besides the above-mentioned configurations, in
recent years, many other types of micro-ring lasers have been re-
ported based on rare-earth-doped MNFs[378,548–550]. It is worth
mentioning that much smaller lasing cavities can be realized us-
ing WGMs of active MNFs, usually dye-doped polymer MNFs.
For example, in 2013 Ta et al. demonstrated single-mode and
multi-mode WGM lasing at room temperature under optical
pumping in a 32-μm-diameter dye-doped PMMA MNF, with
a linewidth of lasing mode narrower than 0.09 nm[551]. Later, a
great deal of MNF-basedWGM lasers have been reported[552–554].
More recently, in a Au nanorod-coupled dye-doped polymer
MNF structure, Zhou et al. experimentally observed the lasing
action of the hybrid photon-plasmon mode [see Fig. 22(b)][417].
Benefitting from the strong mode coupling-enabled loss reduc-
tion of the WGM in thin MNFs, laser output was observed with
MNF diameter down to 2 μm.

5.5.2 MNF-based ultrafast mode-locked pulse lasers

Typically, the diameter-dependent waveguide dispersion of an
MNF can be two orders of magnitude higher than that in a stan-
dard optical fiber, and can be either positive or negative for
compensating material dispersion at almost any wavelength.
Meanwhile, the adiabatic transition of waveguiding modes be-
tween the standard fiber and the MNF enables a compact and
fiber-compatible dispersion management with an insertion loss
below 0.1 dB. In 2006, Rusu et al. integrated a 20-cm-long op-
tical MNF (1.8 μm in diameter) into the cavity of an
Yb3�-doped mode-locked fiber laser to offset the intracavity
normal chromatic dispersion, and demonstrated a reduction
of pulse duration from 8 to 3 ps[209]. To obtain a shorter pulse
duration, in 2018 Wang et al. employed a 25-cm-long, 1-μm-
diameter optical MNF for intracavity dispersion compensation
in an Yb3�-doped mode-locked fiber laser and another MNF
outside the laser cavity for output dechirping, and realized a
single-pulse output with a pulse duration of 110 fs, repeti-
tion rate of 120 MHz, and output power of 60 mW [see
Fig. 22(c)][83]. Shortly after, based on the dispersion-manage-
ment technique, Yang et al. developed an ultrafast Yb3�-doped

all-fiber laser, with a shorter pulse duration of 65 fs, repetition
rate of 66.1 MHz, and output power of ∼28 mW[555]. Through
effective dispersion and nonlinearity management, the broad-
band noise-like pulse could also be extracted from an MNF-
integratedYb3�-doped fiber laser, exhibiting an optical spectrum
spanning from below 1 μm to beyond 1.6 μm[210]. In 2020, Li et al.
used a 10-cm-long 1-μm-diameter silica MNF to compensate for
the intracavity anomalous dispersion and demonstrated a
Tm3�-doped dissipative soliton fiber laser at 2-μm wavelength,
with a pulse duration of 195 fs, a repetition rate of 49MHz, and an
output power of 25 mW[82]. In the same year, relying on a hybrid
plasmonic MNF knot resonator, Ding et al. reported a high-
repetition-rate ultrafast mode-locked laser[374]. As shown in
Fig. 22(d), the all-fiber laser can deliver pulses with a repetition
rate as high as 144.3 GHz around 1550-nm wavelength.
Compared with silica MNFs, chalcogenide-glass (e.g., As2Se3)
MNFs possess large nonlinearity and thus can serve as efficient
nonlinear media in laser cavities. In 2015, Al-Kadry et al. intro-
duced a passively mode-locked fiber laser with nonlinear polari-
zation rotation based on a 10-cm-long As2Se3-PMMAMNF[556].
The fiber laser could generate wavelength-tunable soliton pulses
from 1530 to 1562 nm and noise-like pulses with a central wave-
length of 1560 nm. In addition to the fiber lasers mentioned
above, there is a kind of ultrafast fiber laser enabled by low-
dimension-nanomaterial-integrated MNFs including carbon
nanotubes, graphene, and transition-metal dichalcogenides,
where themodifiedMNFs serve as saturable absorbers. This kind
of ultrafast fiber laser has been widely studied in the past decade,
showing advantages of fast response, high damage threshold, and
all-fiber structure. For more details, one can refer to the reviews
reported previously[84,348].

5.6 Atom Optics

Exploring the light-matter interaction at the atomic level is
of primary interest in quantum optics. Over the last decade,
tremendous progress has been accomplished in optical
controlling individual atoms by exploiting nanoscale optical
structures[557–561], in which MNF-supported atom trapping has
considerable merit such as large potential depth, high flexibility,
low loss, and high compatibility with fiber systems. With tightly
confined evanescent fields around the surface, subwavelength-
diameter MNFs have been proven a very promising platform for
developing cold-atom-based quantum-optics techniques. To
confine cold atoms near the surface of optical MNFs, in
2004 Balykin et al. suggested a theoretical scheme to provide
an attractive potential around a silica MNF by waveguiding a
red-detuned light along the MNF[557]. The red-detuned light
far from resonance generated an intensity-dependent gradient
force, which could be used to balance the centrifugal force
of a moving atom. It was predicted that for a silica MNF
(400 nm in diameter) that waveguided a 27-mW-power 1.3-
μm-wavelength light, cesium atoms could be trapped at a tem-
perature of less than 0.29 mK and guided along the MNF.
Subsequently, Le Kien et al. proposed an improved scheme
by waveguiding two-color evanescent fields (i.e., red-detuned
1.06-μm-wavelength and blue-detuned 700-nm-wavelength
lights) along a 400-nm-diameter silica MNF[558], demonstrating
a stable trapping potential for cesium atoms with a trap depth of
2.9 mK. In 2008, Fu et al. proposed using a red-detuned light
excited in the superposition of the HE11 and TE01 modes and a
blue-detuned light excited in the HE11 mode to produce 1D
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Fig. 23 MNF-based atom optics. (a) Schematic of the MNF-based atom trapping in the evanes-
cent field (upper panel)[559]. Fluorescence image of a trapped ensemble of cesium atoms (lower
panel). (b) Transmission spectrum of a probe beam waveguided along the MNF after loading the
trap (black squares)[559]. Green line: the measured spectrum of a magneto-optical trap (MOT)
cloud. Red line: theoretical fit. (c) Schematic of storage of MNF-guided light based on the EIT
in an evanescent-field configuration[573]. An ensemble of cold cesium atoms is spatially overlapped
with a silica MNF (400 nm in diameter). The signal pulse to be stored is waveguided inside the
MNF while the control light propagates outside the MNF with an angle of ∼13°. (d) Transmitted
pulses with different control powers in (I). The reference is measured in the absence of atoms. (II)
Storage and retrieval processes. In the absence of the control field, the blue and purple points give
the transmitted pulses without and with atoms. The red data indicate the memory sequence, show-
ing leakage and retrieval. The black line represents the control timing. After the end of the input
pulse, the reference and absorption curves are superimposed and correspond to the background
noise level. (III) Normalized efficiency versus the control linear polarization angle. The zero-angle
corresponds to a vertical polarization. (e) Schematic of a fiber ring cavity containing an MNF sec-
tion for collective strong coupling of cold atoms with a cavity mode[576]. DM, dichroic mirror; APD,
avalanche photo diode. (f) Normalized transmission of the cavity as the probe laser frequency is
scanned across the atomic resonance with input powers of 30 pW and 2.3 nW. The blue circles
show data for a cavity in the absence of atoms with a Lorentzian fit. The red crosses correspond to
an ensemble of atoms interacting with the cavity mode, with the theoretical fit shown as a red solid
line.
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lattice potentials with trapping depths larger than 363.1 μK[562].
In 2010, Vetsch et al. experimentally realized MNF-supported
atom trapping[559]. By launching a red-detuned light (1064 nm in
wavelength) and a blue-detuned light (780 nm in wavelength) in
a 500-nm-diameter silica MNF, they created a trapping potential
for localizing cold cesium atoms in a 1D optical lattice close to
(∼200 nm) the MNF surface [see Fig. 23(a)]. To visualize the
trapped atoms, they used a probe laser resonant with the atomic
transition (852 nm in wavelength) to excite the fluorescence
light of the trapped atomic ensemble. Figure 23(b) presents
the transmission spectrum of the probe light with respect to
its detuning, showing a strong absorption after loading the
MNF, which can be attributed to a significant growth in the
number of trapped atoms in the evanescent field. After that,
a variety of optically trapping technologies have been proposed,
allowing in-depth study on the quantum properties of the MNF-
trapped-atom system[563–571].

Meanwhile, in a fiber-coupled atom system, benefitting from
the strong interaction between the waveguiding evanescent field
and the atoms nearby, it is possible to realize the electromag-
netically induced transparency (EIT) process when the EIT
condition is met, as predicted by Patnaik et al. in 2002[572].
In 2015, using a dynamic EIT protocol, Gouraud et al. exper-
imentally demonstrated reversible quantum storage of the
MNF-guided light using a cloud of cold cesium atoms [see
Fig. 23(c)][573], in which the storage and retrieval processes
are shown in Fig. 23(d). One can see that the laser pulses at
the single-photon level (0.6 in mean photon number per pulse)
are stored in and retrieved after around 650 ns, with an effi-
ciency of 10%� 0.5% and signal-to-noise ratio of 20. To ensure
a stable storage process, controlling the polarization in the MNF
is crucial. Following this approach, Sayrin et al. studied
the propagation of a probe pulse under EIT conditions and dem-
onstrated slow light with a group velocity of 50 m/s[574].
Meanwhile, they stored the optical pulses at the single-photon
level and retrieved them after 2 μs, with an overall efficiency
of 3.0%� 0.4%.

It is worth noting that the strength of light-atom interaction is
expected to be further enhanced in MNF cavities. In 2015, Kato
and Aoki first reported the strong coupling between a trapped
single cesium atom and an MNF FP cavity[575]. Well-resolved
vacuum Rabi splitting was observed in the cavity transmission
spectrum when an atom was trapped in a state-insensitive MNF
trap. In 2017, to achieve collective strong coupling with cold
cesium atoms in the weak driving limit, Ruddell et al. con-
structed an alternative all-fiber ring cavity[576]. As shown in
Fig. 23(e), for a low input power (e.g., <1 nW), clear splitting
of the cavity resonance is obtained owing to a collective en-
hancement by an ensemble of atoms interacting with the cavity
mode [see Fig. 23(f)]. With further increasing input power, the
splitting is gradually reduced and eventually disappears (e.g.,
with a power of 2.3 nW).

In addition, the adiabatic evolution of waveguiding modes
between the MNF and standard optical fiber enables effective
collection, coupling, and low-loss propagation of single-photon
sources from MNF-coupled quantum emitters to standard opti-
cal fibers. In recent years, Awide range of MNF-based function-
alized structures have been demonstrated for highly efficient
single-photon collection, such as nanoscale cavities[577–579],
2D-material-integrated MNFs[352], and twin MNF[194] structures.
These high-efficiency fiber-coupled single-photon sources may
play a role in quantum techniques.

As a miniature fiber-optic platform for atom optics, MNF-
based quantum photonics and technology have experienced
rapid development in recent years. These high-efficiency fi-
ber-coupled single-photon sources may play a role in quantum
techniques. We apologize that we cannot cover the whole con-
tent of this topic; a more comprehensive introduction can be
found in recent review papers[86–88].

5.7 More Applications

Besides the applications mentioned above, in recent years, there
are many other versatile MNF-based photonic devices or
techniques that have been reported, ranging from optical fil-
ters[390,580–582], couplers[453,454,583–586], modulators[345,347,587–591], opti-
cal autocorrelators[326–329], and spectrometers[592] to far-field
subwavelength focusing[593] and super-resolution imaging[594].
For example, in 2009 Wang et al. proposed to focus optical
beams with subwavelength resolution in the far field using
an MNF array[593]. In 2013, Hao et al. exploited the evanescent
waves of silica MNFs to illuminate the sample in the near field
and demonstrated super-resolution imaging at the far field in
a single snapshot with a spatial resolution of tens of nano-
meters[594]. More recently, Relying on the leaky modes generated
from non-adiabatic optical MNFs, Cen et al. developed a low-
cost, scalable spectrometer with a picometer resolution and sub-
millimeter footprint[592].

6 Conclusion and Outlook
Over the past two decades, we have witnessed rapid progress in
MNF optics and related technology. As a unique one-dimen-
sional cylinder with a highly symmetric structure and nearly
perfect surface quality and diameter uniformity, glass MNF
can offer extraordinarily low waveguiding loss (e.g., 0.03 dB/
m at 780-nm wavelength in silica MNFs[37]), nearly 100% power
in evanescent waves, high waveguided power density
(>20 W∕μm2 for silica MNF at 1550-nm wavelength[54]), large
length (e.g., >1 m), and a mechanical strength approaching the
theoretical limit (e.g., >10 GPa for silica MNFs[61]), which are
far beyond the reach of all other optical waveguides with similar
mode sizes, ensuring its ability to continuously challenge the
limits of light-based technology. Also, as an excellent platform
merging fiber optics and nanotechnology, the optical MNF will
continue to open up new frontiers of fiber optics and nanopho-
tonics, as we have seen in the fields of MNF-based sensors and
atom optics. Finally, we would like to end this review by looking
into the future, regarding the challenges and opportunities of the
MNF optics and technologies, as follows.

(1) Exploring the fundamental limits of MNF optics.
Despite significant advances in the past two decades, there is
plenty of space to go further, from fabrication, characterization,
and functionalization of optical MNFs with higher precision to
improving the performance of MNF-based light confining,
waveguiding, sensing, lasing, and atom/molecule manipulation.
One promising approach is to further improve and optimize the
geometry of optical MNFs. For example, the surface roughness
of an MNF may be reduced by suppression of surface capillary
waves, and lower scattering loss may be achieved through high-
pressure treatment[595]. Relying on the nearly perfect surface
quality and diameter uniformity of the silica MNF, very recently
Yang et al. predicted that a pair of strongly coupled silica MNFs
can offer an optical field with a spatial confinement down to
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0.15 nm and a peak-to-background ratio of about 20 dB[198], well
beyond the reach of all other means. Such an atomic-sized op-
tical confinement is promising to push the limits of MNF-based
technologies ranging from optical nanoscopy, spectroscopy, and
sensing to atom/molecule manipulation. Additionally, a high-
quality smooth surface with fewer defects is critical to pursue
the upper limit of waveguiding power in an optical MNF, which
may be desired in high-power MNF optics.

(2) Expanding available MNFmaterial systems. Since the
ability of harnessing light of an MNF is intrinsically determined
by its material (i.e., the polarization of the material), to adapt the
MNF technology to a wider range of optical applications, it is
necessary to expand the existing material systems. For example,
with existing MNFs, it is very difficult to low-loss waveguide a
vacuum ultraviolet (VUV, with a wavelength <200 nm) light
due to material absorption, even with a silica MNF. Compared
with the silica MNF, a recently demonstrated ice MNF[126], with
much lower intrinsic material absorption at a wavelength shorter
than 200 nm, offers the possibility for low-loss waveguiding in
the VUV spectral range, and so far, it is possible to fabricate
such a waveguide only in the form of an MNF. In the MIR re-
gion, chalcogenide-glass MNFs have been successfully demon-
strated for optical waveguiding[147,235,236] and supercontinuum
generation[302,304]. More fiber materials (e.g., with lower absorp-
tion) and techniques (e.g., for efficient in/out coupling) can be
explored for lower-loss optical waveguiding and higher power
operation with MNFs.

(3) MNF-based optical technology: from innovation to
application. To date, MNF-based optics and technologies, in-
cluding near-field coupling, atom optics, and optical sensors,
have been employed in scientific research or prototype applica-
tions. However, compared with the mature fiber-optic technol-
ogy, for real applications, there are many challenges regarding
cost-effective fabrication, high-precision manipulation, and
high-repeatability manufacturing of MNFs and related struc-
tures. In this regard, technological improvement and innovation
are highly desired. For example, a high-yield parallel-fabrica-
tion of silica MNFs has been demonstrated[149]. Also, to pre-
cisely assemble the MNFs for practical applications, mature
transferring, manipulating, and encapsulating systems with high
stability and control accuracy are urgently needed.
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